首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ten-week-oldSophora japonica seedlings were grown for 10 weeks at 17, 22, or 27°C and then exposed to 0 or 1.0 /SO2 for 48 hours. The seedlings were subsequently grown at 22°C and harvested 12 weeks later. Effects of preconditioning temperature and SO2 on leaf formation, seedling height and stem diameter, as well as dry weight increment and relative growth rates of leaves, stems, and roots were studied. The preconditioning temperature regime influenced growth and subsequently affected SO2 uptake and growth. However, the responses of seedlings to temperature and SO2 varied with the growth parameter measured. The need for greater standardization of methods and criteria for assessing pollution tolerance of plants is emphasized.Research supported by the College of Agricultural and Life Sciences, University of Wisconsin Madison, Wisconsin, USA. McIntyre-Stennis Project 2599.  相似文献   

2.
Populus euramericana cv. I-214 andHelianthus annuus L. cv. Russian Mammoth were exposed to various concentrations of O3 SO2 or NO2 for 2 h in a cylindrical assimilation chamber. The threshold concentrations of air pollutants for inhibition of net photosynthesis differed between the two species and also between the pollutants tested. Furthermore, the lethal concentrations where the net photosynthetic rates were completely inhibited, also differed between species and between pollutants. For SO2 and NO2,P. euramericana was more tolerant photosynthetically thanH. annuus when related to the concentration of pollutants used during the experiment. However, when related to the cumulative uptake rate of each pollutant, the photosynthetic tolerance of the two species was similar. In contrast to the effects of SO2 or NO2, the influence of O3 on net photosynthesis was quite different. The relative rates of net photosynthesis in both species showed the same linear relationship with O3 concentration. However, the relationship between the relative rate of net photosynthesis and the cumulative uptake rate of O3 differed between the two species, although it was linear in both cases.  相似文献   

3.
Summary Restriction fragment length polymorphisms between Larix leptolepis and Larix decidua were identified in heterologous hybridization experiments, using wheat mitochondrial DNA probes specific for atp9, coxI, nad3/rps12, and orf25. Analysis of eight individuals of each reciprocal hybrid of these two species revealed that mitochondrial DNA was maternally inherited. Furthermore, sequences homologous to wheat orf25 were also identified in Larix gmelini, Larix siberica, Larix olgensis, and Larix laricina, as well as Ginkgo biloba, Picea mariana, Picea glauca and Pinus contorta.  相似文献   

4.
With a new approach we assessed the relative contribution of stored and current carbon compounds to new shoot growth in alpine treeline conifers. Within a free air CO2 enrichment experiment at the alpine treeline in Switzerland, 13C-depleted fossil CO2 was used to trace new carbon in the two tree species Larix decidua L. and Pinus uncinata Ramond over two subsequent years. The deciduous L. decidua was found to supply new shoot growth (structural woody part) by 46% from storage. Surprisingly, the evergreen P. uncinata, assumed to use current-year photosynthates, also utilized a considerable fraction of storage (42%) for new wood growth. In contrast, the needles of P. uncinata were built up almost completely from current-year photosynthates. The isotopic composition of different wood carbon fractions revealed a similar relative allocation of current and stored assimilates to various carbon fractions. Elevated CO2 influenced the composition of woody tissue in a species-specific way, e.g. the water soluble fraction decreased in pine in 2001 but increased in larch in 2002 compared to ambient CO2. Heavy defoliation applied as an additional treatment factor in the second year of the experiment decreased the lipophilic fraction in current-year wood in both species compared to undefoliated trees. We conclude that storage may play an important role for new shoot growth in these treeline conifers and that altered carbon availability (elevated CO2, defoliation) results in significant changes in the relative amount of mobile carbon fractions in woody tissue. In particular, stored carbon seems to be of greater importance in the evergreen P. uncinata than has been previously thought.  相似文献   

5.
Summary A soil pot culture experiment was conducted to study the response ofPinus caribaea var. hondurensis seedlings to the N, P, K fertilizers in a 33 factorial combination of nutrients in four replicates. For this purpose, seedlings were grown in plastic pots in soils collected from Bahau pine experimental area. These soils belong to Durian series and are generally poor in nutrients.The seedlings were supplied with 112 kg/ha, 336 kg/ha and 560 kg/ha (100 lb/ac, 300 lb/ac and 500 lb/ac) of N, P, K in solution form in all possible combinations. Periodic growth measurements were taken and dry matter production was estimated at the conclusion of the experiment.The results indicate that phosphorous is the most important nutrient for the height growth of seedlings. The absolute height increment under the best treatment combination (N1P3K1) was about threefolds (25.7cm) compared to 8.8 cm in the control. It was also found that higher levels of N and K, though not beneficial to height growth, resulted in better radial growth and more dry matter production compared to control plants. However, highest levels of N and K in the present experiment produced inhibitory influence as regards height growth even in the presence of low level of phosphorous.The study indicates that application of phosphorous at least at the rate of 560 kg/ha per plant is necessary on this type of soil to boost the initial height growth ofPinus caribaea var. hondurensis. Nitrogen at the rate of 336 kg/ha and potassium at the rate of 112 kg/ha will induce better radial growth.  相似文献   

6.
Three ectomycorrhizal (ECM) isolates of Rhizopogon luteolus, R. roseolus and Scleroderma citrinum were found to differ markedly in their in vitro tolerance to adverse conditions limiting fungal growth, i.e. water availability, pH and heavy metal pollution. S. citrinum was the most sensitive, R. luteolus intermediate and R. roseolus the most tolerant species. Pinus radiata D. Don seedlings were inoculated in the laboratory and in a containerised seedling nursery with spore suspensions of the three ECM species. Colonisation percentage was considerably lower under nursery conditions, probably due to competition by native fungi. The effects of nursery ECM inoculation on seedling growth depended on the fungal species. Only R. roseolus-colonised plants showed a significantly higher shoot growth than non-mycorrhizal plants. All three fungi induced significantly higher root dry weights relative to control plants. Despite the low mycorrhizal colonisation, mycorrhization with all three species improved the physiological status of nursery-grown seedlings, e.g. enhanced root enzyme activity, shoot nutrient and pigment content, net photosynthesis rate and water use efficiency. Of the three fungal species, R. roseolus was the most effective; this species was also the most adaptable and showed the greatest range of tolerance to adverse environmental conditions in pure culture. It is, therefore, proposed as a promising fungal species for ECM inoculation of P. radiata in the nursery.  相似文献   

7.
Every other week over their second growing season, stem height, collar diameter, shoot and root dry masses, number of lateral roots and length of the tap root were measured on nursery grown seedlings ofAbies balsamea L. Mill.,Pinus banksiana Lamb.,Pinus resinosa Ait.,Picea mariana Mill. BSP andPicea glauca Moench Voss. Root elongation, branching and mycorrhizal development were also recorded.Given species showed distinct seasonal growth patterns. The rate and timing of maximum root growth (mg/dry weight/week) differed markedly between species.Except for the increase in height ofPinus banksiana, root and shoot growth were not negatively correlated.The results are discussed in relation to the performance of tree seedlings in the nursery.  相似文献   

8.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

9.
Primordial shoot explants excised from buds of one Larix decidua tree, about 30 years old, produced more adventitious buds, elongating into shoots, when grown on half strength Litvay medium than when grown on other basal media. Thidiazuron and N6-benzyladenine (BA) were equally effective in adventitious bud induction. In a comparative study of 30-year-old L. decidua, L. leptolepis, L. eurolepis, and L. laricina trees, explants from L. eurolepis and L. decidua produced a high number of cultures with adventitious buds that elongated into shoots; those from L. leptolepis were less productive, and those from L. laricina failed to form adventitious buds. The highest response was obtained with material collected in August and September, and in March and April; the lowest response occurred in explants from the October collection.  相似文献   

10.
大兴安岭北部天然针叶林土壤氮矿化特征   总被引:10,自引:5,他引:5  
肖瑞晗  满秀玲  丁令智 《生态学报》2019,39(8):2762-2771
采用顶盖埋管法对大兴安岭地区天然针叶林(樟子松林、樟子松-兴安落叶松混交林和兴安落叶松林)土壤铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、净氮矿化速率进行研究,并探索土壤理化性质与氮矿化之间的相关性,为大兴安岭地区森林生态系统土壤养分管理及森林经营提供帮助。结果表明:观测期内(5—10月)3种林型土壤无机氮变化范围为31.51—70.42 mg/kg,以NH~+_4-N形式存在为主,占比达90%以上,且与纯林相比混交林土壤无机氮含量较高。3种林型土壤净氮矿化、净氨化、净硝化速率月变化趋势呈V型,7、8月表现为负值,其他月份为正值。净氮矿化速率变化范围樟子松林为-0.54—1.28 mg kg~(-1) d~(-1)、樟子松-兴安落叶松混交林为-0.13—0.55 mg kg~(-1) d~(-1)、兴安落叶松林为-0.80—1.05 mg kg~(-1) d~(-1)。土壤净氨化过程在土壤氮矿化中占主要地位,占比达60%以上。3种林型土壤净氮矿化、净氨化及净硝化速率垂直差异显著,0—10 cm土层矿化作用明显高于10—20 cm土层(P0.05)。土壤氮矿化速率与土壤含水量、土壤有机碳含量、土壤C/N、枯落物全氮含量和枯落物C/N均存在显著相关性。不同类型的森林土壤及枯落物的质量也存在差异,进而影响土壤氮矿化特征。  相似文献   

11.
The growth of six rapid-cycling lines of Brassica species, B. napus, B. campestris, B. nigra, B. juncea, B. oleracea and B. carinata was inhibited by seawater salinity. Based on the change in dry matter reduction relative to the control at varying concentrations of salts (4, 8 and 12 dS m-1), the relative salt tolerance of these species was evaluated. B. napus and B. carinata were the most tolerant and most sensitive species, respectively, while the other four species were moderately tolerant. The influence of seawater on the concentrations of 12 elements including macronutrients and micronutrients in the shoots of these Brassica plants was characterized to determine the relationship between nutritional disturbance and relative salt tolerance. It was found that seawater salinity had a significant effect on the concentrations of Ca, Mg, K, Cl, Na and total N in the shoots of these plants but only the change in Ca concentration was significantly related to the relative salt tolerance of these six rapid-cycling Brassica species according to a rank analysis of the data. This finding indicates that Ca may play a regulatory role in the responses of Brassica species to saline conditions.  相似文献   

12.
贾飞飞  孙翠洋  孙红月  李鑫 《生态学报》2019,39(17):6332-6340
在气候变暖背景下,树木径向生长对气候变化的响应存在不稳定性。利用采自祁连山东部余脉昌岭山两个优势树种油松和青海云杉的树轮样芯,建立树轮宽度标准年表,通过分析树轮宽度年表与气候要素的相关关系,探讨两个树种径向生长对气候变化的响应。结果表明:(1)油松年表比青海云杉年表包含更多的气候信息,其平均敏感度、标准差、信噪比和样本对总体的代表性等统计量均高于青海云杉标准年表。(2)气候要素对不同树种径向生长限制程度不同,油松径向生长主要与降水(前一年9月和当年3-8月)和气温(前一年9月)有关,但对降水的响应更为敏感,而青海云杉径向生长则受到气温(当年9月)和降水(前一年9月、当年3月和7月)的共同作用。(3)气温突变后,油松和青海云杉年表与各气温要素的相关性显著增强,而青海云杉年表与气温要素的相关性变化更明显,指示了青海云杉径向生长对气温的响应更不稳定。(4)生长季平均最低气温的升高诱导的干旱胁迫是油松和青海云杉树木径向生长-气温响应变化的主要原因。  相似文献   

13.
Ten isolates of six species of ectomycorrhizal fungi were grown in vitro at nine concentrations of three sodium salts (NaCl, Na2SO4, Na3C6H5O7) for 4 weeks. Colony diamater, biomass and protein content of fungi were evaluated. Isolates of Pisolithus tinctorius and Suillus luteus were more tolerant of NaCl and Na2SO4 than of Na3C6H5O7. Fungi in the genera Cenococcum, Laccaria, and Thelephora were highly intolerant of Na3C6H5O7 and Na2SO4 in vitro. Biomass and protein content of fungi generally declined with increasing substrate salinity in solution culture. In situ ectomycorrhizal colonization by Laccara laccata and P. tinctorius and the dry weight of Pinus taeda seedlings were significantly reduced by 80 mM NaCl after 14 weeks. Only select ectomycorrhizal fungi appear capable of growth and symbiosis in saline soils.  相似文献   

14.
杨绕琼  范泽鑫  李宗善  温庆忠 《生态学报》2018,38(24):8983-8991
云南松(Pinus yunnanensis)是重要的造林树种,在我国西南地区广泛分布。研究不同海拔云南松径向生长对气候变化的响应,有助于了解气候变化背景下云南松的敏感性和适应性。在滇西北丽江玉龙雪山不同海拔采集了云南松树木年轮样品,采用传统的树木年轮方法制作了不同海拔云南松树轮宽度标准化年表,并分析了不同海拔云南松径向生长与气候因子的相关性。结果表明:1)低海拔样点云南松具有较快的年平均生长速率。2)不同海拔云南松对气候因子的响应模式一致,树轮宽度与当年5—6月的降水量、帕尔默干旱指数(PDSI)和相对湿度呈正相关,与同期温度呈负相关。3)不同海拔的云南松径向生长对气象因子的响应程度不一样,即低海拔样点云南松树轮宽度与当年5月份的干旱指数、相对湿度、降水量相关系数较高;而高海拔样点的云南松树轮宽度与5—6月的降水、相对湿度、干旱指数的相关系数较低。研究表明春末夏初的水分条件是玉龙雪山云南松径向生长的主要限制因子,且低海拔地区云南松生长受水分限制更为严重,区域气候变暖和干旱化趋势可能对低海拔地区云南松的生长产生持续的负面效应。研究结果可为探讨气候变化下云南松的适宜分布区、以及云南松人工林的经营和可持续管理提供参考。  相似文献   

15.
Light-saturated net photosynthesis (Asat), dark respiration (RD), and foliar nutrient content of eight European Scots pine (Pinus sylvestris L.) provenances were measured at experimental sites in western Poland. Two-year-old seedlings were planted in 1984 at two sites with similar soils in areas of contrasting air pollution. One site was near a point source of SO2 and other pollutants, and another 12 km to the southeast in an area free of acute air pollution was treated as a control. The eight provenances were from a large north-tosouth latitudinal range (60 to 43° N). At the heavily polluted site Scots pine trees exhibited lower growth rates and crown dieback and deformation. Soil pH, Ca and Mg were at least 10 times lower, and Al 10 times higher at the polluted than the control site. In 1991, concentrations of Al, P, Ca, S, Mn, Fe, and Zn in oneyear old Scots pine foliage were higher and Mg lower at the polluted than control site. At both sites foliar Mg levels were within the range considered deficient (0.6 mg g-1), and at the polluted site, Al concentrations were very high (670 to 880 g g-1). In all provenances, RD of one-year-old needles was higher (by 22% on average) and Asat was lower (by 37% on average) at the polluted than the control site. The ratio of Asat: RD was half as great in all provenances at the polluted (4 to 6) than control site (8 to 11). Provenances of southern origin had greater increases in RD and water-use efficiency at the polluted site than other provenances. Within the polluted site alone, or across both sites, Asat in Scots pine was negatively correlated to the Al: Ca ratio (p<0.001, r=–0.93). Across sites RD increased with needle N and Al (multiple regression, p<0.001). The data suggest that at the polluted site there is excessive soil Al and deficient Mg availability, low needle Mg and high Al concentrations and high Al: Ca ratios, and that these have resulted in reduced photosynthetic capacity and increased respiration.  相似文献   

16.
Monthly uptake rates and the annual deposition of gaseous SO2 via the stomata of six Norway spruce canopies (Picea abies (L.) Karst.) in Germany (Königstein im Taunus, Witzenhausen, Grebenau, Frankenberg, Spessart, Fürth im Odenwald) were calculated (i) from statistical response functions of stomatal aperture depending on meteorological data, and (ii) from the synchronously measured SO2 immission at these stands. The stomatal response functions had been derived on the basis of thorough stomatal water conductance measurements in the field. Calculations of the SO2 conductance of spruce twigs and SO2 uptake rates via stomata need continuously measured complete data sets of the (i) light intensity, (ii) air temperature, (iii) air humidity and (iv) SO2 concentration in spruce forests from all the year. These data were recorded half hourly in different German spruce forests. The apparent needle water vapour pressure difference and transpiration rates were calculated from meteorological data. Additional use of canopy through flow data in dry years allowed the estimation of the mean stomatal conductance for H2O and SO2 of whole spruce canopies. The annual SO2 uptake of a mean unit needle surface in spruce forests was 32% of the SO2 uptake rate of exposed needles at the top of spruce crowns. There is significant SO2 uptake all the year. The mean SO2 dose at all sites and years received through the stomata was (0.25±0.07) mol SO2 m-2 (total needle surface) (nPa Pa-1)-1 (annual mean of SO2 immission; 1 nPa (SO2) Pa-1 (air) = 1 ppb) day-1 (vegetation period per year). Comparison of calculated SO2 uptake rates into needles with measured SO4 2- accumulation rates in needles from the mentioned sites and additionally from Würzburg, Schneeberg (Fichtelgebirge) and from three sites in the eastern Erzgebirge (Höckendorf, Kahleberg, Oberbärenburg) revealed that oxidative SO2 detoxification (SO4 2- formation) dominates only at sites with high SO2 immission and short vegetation periods. Under these conditions 70 to 90% of the annual stomatal SO2 uptake is detoxified via SO4 2- accumulation in needles. Cations are needed for neutralization of accumulating SO4 2- which are inavailable to support growth. Thus, SO2 induces a dominant and competitive additional nutrient cation demand, cation deficiency symptoms and enhanced needle loss (spruce decline symptoms) mainly at sites, where the ratio R=(SO2 immission): (length of the vegetation period) is higher than R=0.07 nPa Pa-1 day-1. Correlation analysis of the relative needle loss versus the SO2-dependent SO4 2- formation rate revealed a significant increase of needle loss at the 98% level (Student). At sites with small SO2 immission and long vegetation periods (R<0.07 nPa Pa-1 day-1) reductive SO2 detoxification via growth (and/or phloem export of SO4 2-) is not kinetically overburdened. Under these conditions only 30% of the annual SO2 uptake is detoxified via SO4 2- formation and spruce decline is small or absent. On the basis of the critical value R0.07 nPa Pa-1 day-1 recommended SO2 immission limits can be deduced on a mere ecophysiological basis. These deduced values are close to the proposed SO2 immission limits of the IUFRO, WHO and the UNECE.  相似文献   

17.
The emission of reduced volatile sulfur compounds from twigs of Norway spruce (Picea abies (L.) Karst.) was measured in the field by cryosampling and gaschromatographic analysis. Trees were growing in the Erzgebirge (E-Germany) at Oberbärenburg and at the Kahleberg and at a third stand in NW-Bavaria (S-Germany). Emission rates were also measured for Scotch pine (Pinus sylvestris L.) and Blue spruce (Picea pungens Engelm.) at the Kahleberg. Twigs still attached to the trees were enclosed in a flow-through gas exchange cuvette. H2S was detected as the predominant reduced sulfur compound emitted from the twigs. The mean H2S emission rate from twigs of Norway spruce varied between 0.04 pmol kg-1 dw s-1 at Würzburg and 6.21 pmol kg-1 dw s-1 at the Kahleberg. Comparing different species at the Kahleberg, the mean H2S emission rate was almost the same from twigs of Norway spruce (6.2 pmol kg-1 dw s-1) and Blue Spruce trees (5.9 pmol kg-1 dw s-1) but it was approximately 18 times higher for Scotch pine (110 pmol kg-1 dw s-1). The percentage of SO2-exclusion via H2S-emission of the tree species investigated at the Kahleberg is calculated on the basis of data on SO2 fluxes. It is very small for Norway spruce and Blue spruce. However, for Scotch pine, H2S emission contributes about 10% to the detoxification of SO2.  相似文献   

18.
宣海憧  郭梦昭  高露双  范春雨 《生态学报》2020,40(12):4087-4093
以3种间伐强度处理下(15%,30%和50%)针阔混交林内优势树种红松(Pinus koraiensis)和水曲柳(Fraxinus mandshurica)为研究对象,基于3次复测数据和树轮宽度数据分析不同间伐强度处理下红松和水曲柳的竞争变化特征,探讨竞争环境变化对保留木径向生长的影响。结果表明,1)红松保留木竞争环境发生变化的单木比例随着间伐强度增加而有所下降,但竞争减弱的保留木所占比例与间伐强度正相关,重度间伐样地内竞争减弱的红松保留木所占比例最大达到63%。不同间伐强度下水曲柳保留木竞争环境发生变化的单木比例一致,竞争减弱的单木比例占50%。2)不同竞争环境的水曲柳保留木径向生长趋势基本一致,而红松保留木径向生长变化趋势有所不同。轻度和重度间伐样地内竞争减弱的红松保留木径向生长在间伐后均呈上升趋势,而中度间伐样地内竞争减弱的红松保留木和各样地竞争不变的红松保留木以及不同竞争强度下水曲柳保留木均在2013年和2014年(间伐后2年内)出现生长抑制,而在2015年(伐后第3年)得到促进。3)随着间伐强度上升,自2015年(伐后第3年)竞争减弱的红松保留木径向生长年增量明显增加,显著高于竞争不变的红松(P0.05),而竞争减弱的水曲柳保留木径向生长年增量自2014年(伐后第2年)在重度间伐样地内增加幅度最大,其次为轻度间伐样地,而在中度间伐样地内增加幅度最低。  相似文献   

19.
Contents of organic sulfur, sulfate and the inorganic cations K+, Ca2+, Mg2+, Mn2+ and Na+ were compared in needles of three conifer species differing in tolerance to chronic SO2 immissions. Sulfate and organic sulfur compounds were also measured in bark and wood. Field material was collected from Norway Spruce (Picea abies (L.) Karst.), Colorado Spruce (Picea pungens Engelm.) and Scots Pine (Pinus sylvestris L.) at sites where the SO2 concentration in air was high, and at another site where it was low. In general, sulfate contents were higher but cation contents lower at the sites where SO2 concentrations were high than where they were low. Up to 114mmol · (kg DW)–1 sulfate was measured in fouryear-old needles of Norway Spruce from the Erzgebirge (annual mean of SO2 in air 32 nl · 1–1). Sulfate accumulation in this SO2-sensitive conifer increased with SO2 concentration in ambient air and with needle age, indicating that the main part of the sulfate resulted from the oxidative detoxification of SO2. Loss of inorganic cations from ageing needles was reduced, or cation levels even increased, with increasing needle age, while sulfate accumulated. Apparently, cations served as counter-ions for sulfate, which is sequestered in the vacuoles. Individual trees differed in regard to the nature of cations which accumulated with sulfate. Calcium, potassium and magnesium were the dominating cations. Sodium levels were very low. Needles of the SO2-tolerant conifers Colorado Spruce and Scots Pine growing next to Norway Spruce in the Erzgebirge did not accumulate, or accumulated less, sulfate with increasing needle age as compared to needles of Norway Spruce. However, somewhat more sulfate was found in the bark of the SO2-tolerant species than in the bark of Norway Spruce. Scots Pine contained distinctly more sulfate in the wood than the other conifers. Since accumulation of organic sulfur compounds could not be observed with increasing needle age, or in bark and wood, reduction does not appear to play a major role in the detoxification of SO2 by the investigated species. Physiological mechanisms permitting Colorado Spruce and Scots Pine to avoid the sulfate accumulation in the needles and the accompanying sequestration of cations that are observed in neighbouring Norway Spruce are discussed on the basis of the obtained data.Abbreviations Sorg organic sulfur compounds Died June 10, 1991, aged 29, in a traffic accident. He initiated this work.This work was supported by the Sonderforschungsbereich 251 of the University of Würzburg and by the Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU). The authors with to thank Prof. Dr. W Kaiser and Prof. Dr. W. Urbach (both Julius-von-Sachs-Institut, University of Würzburg, Germany) for HPLC-analysis and ICP-analysis.  相似文献   

20.
为了揭示珍稀濒危植物长白松(Pinus sylvestris var. sylvestriformis)天然种群生存压力状况,在全面调查长白山国家级自然保护区长白松分布的基础上,基于邻体干扰模型,引入树高、冠幅、方位等因子,提出3种生存压力指数:个体生存压力指数、种群生存压力指数和群落生存压力指数,分析天然长白松所处6种群落类型中的生存压力。结果表明:长白松承受群落生存压力(PI)从大到小依次为:白桦-臭冷杉群落(PI=21.532)、红松-长白松群落(PI=14.185)、白桦群落(PI=13.262)、臭冷杉-长白松群落(PI=8.752)、长白落叶松-鱼鳞云杉群落(PI=7.780)和蒙古栎群落(PI=5.440)。多重比较单向方差分析表明,6种群落类型中长白松生存压力总体上差异明显,白桦-臭冷杉群落中长白松生存压力最大,显著高于其他5种群落;竞争树种主要为长白落叶松、红松、长白松、山杨和白桦,这5个树种生存压力大小占群落生存压力的87%;红松-长白松群落和白桦群落中长白松生存压力无明显差异,但显著高于臭冷杉-长白松群落、长白落叶松-鱼鳞云杉群落和蒙古栎群落;臭冷杉-长白松群落、长白落叶松-鱼鳞云杉群落和蒙古栎群落中长白松生存压力相对较小,彼此无明显差异。长白松生存压力与其所处植物群落演替阶段及其龄级结构有关。目前,保护区采取严格保护和管理方式不完全有利于长白松种群的稳定发展。根据长白松种群所处的植物群落生境特点、种群生存压力状况并结合种群年龄结构特征,针对不同群落类型提出相应抚育措施建议以期为长白松天然种群的保护提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号