首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
葡萄细胞悬浮培养生产白藜芦醇   总被引:1,自引:0,他引:1  
以巨峰葡萄果皮为外植体,在添加2.0 mg/L 6-苄基嘌呤(6-BA)和0.1 mg/L 2,4-二氯苯氧基(2,4-D)的B5培养基上诱导葡萄愈伤组织; 以50 g/L的初始接种量在添加1.0 mg/L 6-BA和0.05 mg/L 2,4-D的B5液体培养基上建立葡萄悬浮培养体系。在25~27 ℃下,摇床振荡暗培养(120~130 r/min)18 d后,葡萄细胞生物量和白藜芦醇含量达到最大值(16.17 g/L、95.69 μg/g干质量)。在培养第12天时,向培养基中添加100 μmol/L茉莉酸甲酯(MeJA),经过6 d处理,细胞中白藜芦醇含量达235.73 μg/g干质量。  相似文献   

2.
The effects of two synthetic elicitor indanoyl-isoleucine (In-Ile), N-linolenoyl-l-glutamine (Lin-Gln) and one biotic elicitor insect saliva (from Manduca sexta larvae) on plant cell cultures with respect to the induction of secondary metabolite production were investigated. Stimulated production of secondary metabolites, particularly anthocyanins in plant cells and phenolic acids in culture medium, was studied by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. In the treatments with In-Ile, the production of anthocyanins was enhanced 2.6-fold. In-Ile, Lin-Gln and saliva significantly elevated the accumulation of phenolic acids, particularly 3-O-glucosyl-resveratrol. The used elicitors did not suppress cell growth. Secondary metabolites were differently responsive to elicitation. 3-O-glucosyl-resveratrol was the predominant phenolic acid in V. vinifera cell culture, and its production was significantly stimulated by saliva, with 7.0-fold of the control level 24 h after treatment. The production of 4-(3,5-dihydroxy-phenyl)-phenol was significantly stimulated by In-Ile with 6.4-fold of the control level 24 h after treatment.  相似文献   

3.
Sucrose was found to modulate polyphenol accumulation in Vitis vinifera cell cultures. The production of anthocyanins increased 12-fold after addition of 0.15 m sucrose, while that of stilbenes was only slightly affected. Sucrose did not play a physical role because metabolic sugars were required for the induction of polyphenol accumulation. Indeed, the polyols, mannitol and sorbitol, had no effect on this accumulation. We established a model system to investigate the mechanism of sucrose regulation of polyphenol production without inhibition of grape cell growth. After addition of sucrose to the culture medium, the major sugars accumulated in grape cells were glucose and fructose, reaching 40% of the dry weight. The increase in the level of these hexoses closely coincided with the increase in anthocyanin accumulation in grape cells. Received: 18 August 1997 / Revision received: 6 November 1997 / Accepted: 5 January 1998  相似文献   

4.
Suspension cultures of Vitis vinifera were cultured in different media in order to establish a model system for promoting high levels of phenolic substances identical with those found in wine. These media were: a low sucrose maintenance medium (MM) and four high sucrose media (differing mainly in sucrose and mineral contents) which were shown to induce secondary metabolism. In MM medium, polyphenol accumulation in the cells was low, and concentrations of 0.1 mg/gfw for condensed tannins and 0.3 mg/gfw for anthocyanins were reached within two weeks of cultivation. Values of 1.4 and 6.4 mg/gfw, respectively, were obtained with a low nitrate and high sucrose medium (HM1), but cell proliferation was reduced. To obtain a maximal production of polyphenols, we investigated the most effective conditions for cell growth and polyphenol production (a high mineral and high sucrose medium, IM1; inoculum dilution of 1.25:10). Under these conditions, the cells produced mainly anthocyanins (1100 mg/l), proanthocyanidins (300 mg/l) and catechins (25 mg/l).Abbreviations BuOH n-butanol - dw dry weight - fw fresh weight  相似文献   

5.
Modifications to a heat conduction flow microcalorimeter are described which allow registration of heat production by cells cultured in suspension. LS cells produced 34 +/- 3 pW per cell. Over an 8.5 h period, cell numbers increased by 9% and heat production per cell by 18%. Oxygen consumption per cell was 0.244 +/- 0.02 mumol min-1 per 10(8) cells and the enthalpy change was -836 kJ/mol O2. An automated pumping system allowed sequential registration of heat production by untreated cells and those exposed to a metabolic inhibitor. The results showed that 0.1 mM 2,4-dinitrophenol caused a greater increase in power (+65% at 1.5 h) than in oxygen consumption (+36%). The opposite occurred in the case of cells treated with 1 mM potassium cyanide, heat dissipation being depressed (-48%) slightly less than oxygen uptake (-52%). The results illustrate the potential of careful calorimetric determinations in studying metabolic events in the growth and division of cells in culture.  相似文献   

6.
The use of plant cell cultures for producing isotopically (13C) labelled phenolic substances is reported. Vitis vinifera cells synthesize high levels of anthocyanins when they are cultured in a polyphenol synthesis-inducing medium. Three major anthocyanin monoglucosides found in red wine were identified in grape cells: cyanidin-3-O-beta-glucoside, peonidin-3-O-beta-glucoside, and malvidin-3-O-beta-glucoside. Kinetic study of the intracellular level of phenylalanine and its metabolites showed that it is preferable to add this precursor to grape cell suspensions after the 5th day of culture, i.e. at the beginning of the exponential growth phase. After adding phenylalanine to the culture medium, its uptake was complete and the accumulation of anthocyanins in grape cells was stimulated. Incorporation of [1-13C]-phenylalanine into anthocyanins was measured by means of 13C satellites in the proton NMR spectrum. The maximal rate of 13C enrichment anthocyanins obtained with this technique reached 65%. The production of 13C labelled phenolic compounds was undertaken in order to investigate their absorption and metabolism in humans.  相似文献   

7.
Suspension cultures of Vitis vinifera were found to produce catechins and stilbenes. When cells were grown in a medium inducing polyphenol synthesis, (−)-epicatechin-3-O-gallate, dimeric procyanidin B-2 3′-O-gallate and two resveratrol diglucosides were isolated, together with a new natural compound that was identified as cis-resveratrol-3,4′-O-β-diglucoside by spectroscopical methods.  相似文献   

8.
Cultivating Vitis vinifera cell suspensions in a production medium which is characterized by high sucrose and low nitrate concentrations (132 mM and 6.25 mM respectively) repressed growth but enhanced the intracellular accumulation of anthocyanins, especially peonidin 3-glucoside. Increasing the ammonium concentration of the production medium from 2 to 8–16 mM increased growth and decreased the accumulation of anthocyanins and peonidin 3-glucoside specifically. Instead, peonidin 3-p-coumaroylglucoside accumulated. At 24 mM ammonium concentration, growth was inhibited and accumulation of peonidin 3-p-coumaroylglucoside was significant (p<0.05) and represented 42% of total anthocyanins after 12 days of culture compared with 19% in the production medium with 2 mM ammonium.Contribution Number 217.  相似文献   

9.

Background

Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM) to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, β-, γ- δ-tocopherols) production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, β-, γ- and δ-tocopherols) and dry cell weights were determined in the harvested cells.

Results

Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g), total flavanol (15.94 mg/100 g), total flavonol (14.73 mg/100 g) and trans-resveratrol (490.76 μg/100 g) were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, β and γ tocopherols (145.61, 25.52 and 18.56 μg/100 g) were detected in the cell cultures collected at day 6.

Conclusions

As a conclusion, secondary metabolite contents were increased by cadmium chloride application and sampling time, while dry cell weights was reduced by cadmium chloride treatments.  相似文献   

10.
14C-L-phenylalanine is incorporated into a range of polyphenolic compounds when fed to grape cell cultures. Optimisation of several parameters such as the quantity of precursor applied and the duration of metabolism led to incorporation yields of 15% and to specific activities of 875 mu Ci g(-1) in stilbenes. Purification of the products by several chromatographic steps is reported. Both trans- and cis-resveratrols were easily obtained by enzymatic hydrolysis of their corresponding glucosides, with specific activity of 1200-1400 mu Ci g(-1). The specific radioactivity obtained for all the compounds is suitable for in vivo feeding trials to trace their metabolic fate when consumed by animals and for in vitro activity mechanism studies. Indeed, these polyphenols seem to be implicated in the health benefits associated with regular and moderate wine consumption but little is known about their pharmacokinetics and cellular uptake.  相似文献   

11.
Among the problems associated with the bioconversion of monoterpenes by plant cell suspensions are the toxicity of some substrates and/or products at low concentrations, the transient state of nascent products and the length of time required to obtain the cell suspension. We investigated the extractive bioconversion of geraniol by a Vitis vinifera c.v. Muscat de Frontignan cell suspension in a two-phase system consisting of an aqueous nutrient phase surmounted by a lipid (Miglyol 812) phase. This system proved to be advantageous as it allowed a five-fold increase in the substrate load without causing any detrimental effect on the cell suspension, it improved the persistence of nascent products and it permitted the recycling or re-use of the cell suspension in a monoterpene bioconversion process.CRASH contribution no. 060  相似文献   

12.
Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g–1 dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g–1 DCW, in response to treatment with jasmonic acid, and comprising 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g–1 DCW which made up 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g–1 DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g–1 DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g–1 DCW, but there was no change in the anthocyanin composition.  相似文献   

13.
Simon Conn  Chris Franco  Wei Zhang 《Planta》2010,231(6):1343-1360
Anthocyanic vacuolar inclusions (AVIs) are intra-vacuolar structures capable of concentrating anthocyanins and are present in over 50 of the highest anthocyanin-accumulating plant species. Presence of AVIs alters pigment intensity, total anthocyanin levels, pigment hue and causes bathochromic shifts in a spatio-temporal manner within various flowers, vegetables and fruits. A year-long study on Vitis vinifera cell suspension cultures found a strong correlation between AVI prevalence and anthocyanin content, but not the number of pigmented cells, growth rate or stilbene content. Furthermore, enhancement of the prevalence of AVIs and anthocyanins was achieved by treatment of V. vinifera cell suspension cultures with sucrose, jasmonic acid and white light. A unique autofluorescence of anthocyanins was used to demonstrate microscopically that AVIs proceed from the cytosol across the tonoplast and were able to coalesce intravacuolarly, with fewer, larger AVIs predominating as cells mature. Purification and characterisation of these bodies were performed, showing that they were dense, highly organic structures, with a lipid component indicative of membrane-encasement. These purified AVIs were also shown to comprise long-chain tannins and possessed an increased affinity for binding acylated anthocyanins, though no unique protein component was detected.  相似文献   

14.
G Feron  M Clastre  C Ambid 《FEBS letters》1990,271(1-2):236-238
Two prenyltransferases were located in cell cultures of Vitis vinifera. A geranyl pyrophosphate synthase (EC 2.5.1.1) was associated with plastid-like membranes whereas a farnesyl pyrophosphate synthase (EC 2.5.1.10) was found to be soluble.  相似文献   

15.
Plant Cell, Tissue and Organ Culture (PCTOC) - Temperature and copper stress are two common abiotic stresses in viticulture. To better understand biosynthesis of melatonin and phenolics in response...  相似文献   

16.
The advantages of the presence of cyclodextrins in a reaction catalyzed by immobilized lipoxygenase at neutral pH are reported for the first time. The steady-state rate in the presence of beta-cyclodextrins was seven times higher than in control experiments using the same concentration of linoleic acid; furthermore the percentage of substrate conversion (and product accumulation) obtained in the presence of beta-cyclodextrins was higher than in the control assays. The optimum concentration of free linoleic acid coincided with the critical micellar concentration for linoleic acid at neutral pH. The operational stability of the immobilized enzyme increased in the presence of beta-cyclodextins, while an increase in the percentage of 13-HPOD was also observed.  相似文献   

17.
A stable salt-tolerant cell-suspension culture of Alluaudiopsis marnieriana was established, and intracellular compounds that accumulated under salt-stress conditions were investigated. HPLC/MS, and NMR analyses indicated that enhanced accumulation of coniferin was found during the growth phase in medium containing 150 mM NaCl. Coniferin or its derivatives may play an important role in salt-tolerance mechanisms in this plant.  相似文献   

18.
The yeast microbiota present on the surface of grapes of two Vitis vinifera varieties, Pedro Ximénez and Tempranillo de Rioja, grown in the Montilla-Moriles region of southern Spain was identified. The changes between veraison and the physiological ripeness time during 3 years were monitored. Overall, the yeast microbiota isolated was of oxidative metabolism. Sporobolomyces roseus and Cryptococcus albidus species occurred at all physiological stages, in the two Vitis vinifera varieties, and the three seasons studied. On the other hand, Kloeckera apiculata was never detected and Saccharomyces cerevisiae was scarcely isolated, it was only present, testimonial, in Tempranillo de Rioja grapes during the 1992 vintage. The widest variety of yeast species was observed in the 1992 season, and in contrast, the lowest number of species in both varieties of Vitis was detected in the 1994 season.  相似文献   

19.
Cell cultures of grapes, Vitis vinifera L. cv Gamay Fréaux were grown under different conditions of external osmotic potential induced by an increase of sucrose concentration or by the addition of mannitol to the culture medium. Addition of 82 mM mannitol or increasing sucrose concentration to 132 mM had similar effects on repressing growth. Cyanidin 3-glucoside, peonidin 3-glucoside and peonidin 3-p-coumaroylglucoside are three main anthocyanins of Vitis cells. Increasing osmotic potential from –0.43 MPa to –0.8 MPa in the medium resulted in a significant intracellular accumulation of anthocyanin especially peonidin 3-glucoside in the pigmented cells. High osmotic potential appears to stimulate the methylation of anthocyanins. Osmotic potential is an important culture factor and may be useful in the controlling of anthocyanin production and composition.  相似文献   

20.
Granulosa cells harvested from pro-estrous follicles of porcine ovary were grown in medium 199 supplemented with 0.4, 1 and 10% of growth-promoting calf serum proteins (GPP), and their multiplication and hormonal activity were compared with those of sister cultures carried in medium 199 supplemented with 10% calf serum. The medium containing the growth-promoting proteins was always superior to the whole-serum medium with regard to cell multiplication, activity of Δ5,3 hydroxysteroid dehydrogenase detected histochemically in the cells, and production of progesterone estimated by radioimmunoassay in the medium. It was inferior when it came to estrogen secretion in the beginning of the cultivation when calculated on a per cell basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号