首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: RT-qPCR is a common tool for quantification of gene expression, but its accuracy is dependent on the choice and stability (steady state expression levels) of the reference gene/s used for normalization. To date, in the bone field, there have been few studies to determine the most stable reference genes and, usually, RT-qPCR data is normalised to non-validated reference genes, most commonly GAPDH, ACTB and 18 S rRNA. Here we draw attention to the potential deleterious impact of using classical reference genes to normalise expression data for bone studies without prior validation of their stability. RESULTS: Using the geNorm and Normfinder programs, panels of mouse and human genes were assessed for their stability under three different experimental conditions: 1) disease progression of Crouzon syndrome (craniosynostosis) in a mouse model, 2) proliferative culture of cranial suture cells isolated from craniosynostosis patients and 3) osteogenesis of a mouse bone marrow stromal cell line. We demonstrate that classical reference genes are not always the most 'stable' genes and that gene 'stability' is highly dependent on experimental conditions. Selected stable genes, individually or in combination, were then used to normalise osteocalcin and alkaline phosphatase gene expression data during cranial suture fusion in the craniosynostosis mouse model and strategies compared. Strikingly, the expression trends of alkaline phosphatase and osteocalcin varied significantly when normalised to the least stable, the most stable or the three most stable genes. CONCLUSION: To minimise errors in evaluating gene expression levels, analysis of a reference panel and subsequent normalization to several stable genes is strongly recommended over normalization to a single gene. In particular, we conclude that use of single, non-validated "housekeeping" genes such as GAPDH, ACTB and 18 S rRNA, currently a widespread practice by researchers in the bone field, is likely to produce data of questionable reliability when changes are 2 fold or less, and such data should be interpreted with due caution.  相似文献   

2.
3.
4.
5.
6.
7.
Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus) under various conditions (sex, age, water temperature, and drug treatments), seven reference genes, including beta actin (ACTB), beta-2 microglobulin (B2M), embryonic elongation factor-1 alpha (EEF1A), glyceraldehyde phosphate dehydrogenase (GAPDH), alpha tubulin (TUBA), ribosomal protein l8 (RPL8) and glucose-6-phosphate dehydrogenase (G6PDH), were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.  相似文献   

8.
9.
Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.  相似文献   

10.
11.
12.
13.
Aspergillus flavus is an environmental pathogen that produces highly carcinogenic aflatoxins. Biosynthesis of aflatoxins is affected by external factors such as pH, temperature, carbon source and nitrogen source. Real-Time PCR (RT-qPCR) is a powerful technique used to detect minute changes in gene expression of a target gene in comparison to one or more reference genes. Several candidate genes were analysed to determine their suitability for use as reference genes for analysing gene expression in A. flavus via RT-qPCR under various aflatoxin conducive and non-conducive conditions. BestKeeper analysis indicated that histone H4 (hisH4) and cytochrome C oxidase subunit V (cox5) were suitable reference genes for analysis of gene expression in A. flavus via RT-qPCR. This was further confirmed by REST2009 analysis of hisH4 and cox5 stability. Furthermore, REST2009 was used to predict which gene or gene combination would be the best reference gene/s for RT-qPCR expression analysis under each treatment condition tested in this study.  相似文献   

14.
The process of selection and validation of reference genes is the first step in studies of gene expression by real-time quantitative polymerase chain reaction (RT-qPCR). The genome of lettuce, the most popular leaf vegetable cultivated worldwide, has recently been sequenced; therefore, suitable reference genes for reliable results in RT-qPCR analyses are required. In the present study, 17 candidate reference genes were selected, and their expression stability in lettuce leaves under drought, salt, heavy metal, and UV-C irradiation conditions and under the application of abscisic acid (ABA) was evaluated using geNorm and NormFinder software. The candidate reference genes included protein-coding traditional and novel reference genes and microRNAs (miRNAs). The results indicate that the expression stability is dependent on the experimental conditions. The novel protein-coding reference genes were more suitable than the traditional reference genes under drought, UV-C irradiation, and heavy metal conditions and under the application of ABA. Only under salinity conditions were the traditional protein-coding reference genes more stable than the novel genes. In addition, the miRNAs, mainly MIR169, MIR171/170 and MIR172, were stably expressed under the abiotic stresses evaluated, representing a suitable alternative approach for gene expression data normalization. The expression of phenylalanine ammonia lyase (PAL) and 4-hydroxyphenylpyruvate dioxygenase (HPPD) was used to further confirm the validated protein-coding reference genes, and the expression of MIR172 and MIR398 was used to confirm the validated miRNA genes, showing that the use of an inappropriate reference gene induces erroneous results. This work is the first survey of the stability of reference genes in lettuce and provides guidelines to obtain more accurate RT-qPCR results in lettuce studies.  相似文献   

15.
Quantitative real-time RT-PCR (RT-qPCR) has proven to be a valuable molecular technique in gene expression quantification. Target gene expression levels are usually normalized to a stably expressed reference gene simultaneously determined in the same sample. It is critical to select optimal reference genes to interpret data generated by RT-qPCR. However, no suitable reference genes have been identified in human ovarian cancer to date. In this study, 10 housekeeping genes, ACTB, ALAS1, GAPDH, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP as well as 18S rRNA that were already used in various studies were analyzed to determine their applicability. Totally 20 serous ovarian cancer specimens and 20 normal ovarian epithelial tissue specimens were examined. All candidate reference genes showed significant differences in expression between malignant and nonmalignant groups except GUSB, PPIA, and TBP. The expression stability and suitability of the 11 genes were validated employing geNorm and NormFinder. GUSB, PPIA, and TBP were demonstrated as the most stable reference genes and thus could be used as reference genes for normalization in gene profiling studies of serous ovarian cancer, while the combination of two genes (GUSB and PPIA) or the all three genes should be recommended as a much more reliable normalization strategy.  相似文献   

16.
17.
18.
19.
The selection and validation of stably expressed reference genes is a critical issue for proper RT-qPCR data normalization. In zebrafish expression studies, many commonly used reference genes are not generally applicable given their variability in expression levels under a variety of experimental conditions. Inappropriate use of these reference genes may lead to false interpretation of expression data and unreliable conclusions. In this study, we evaluated a novel normalization method in zebrafish using expressed repetitive elements (ERE) as reference targets, instead of specific protein coding mRNA targets. We assessed and compared the expression stability of a number of EREs to that of commonly used zebrafish reference genes in a diverse set of experimental conditions including a developmental time series, a set of different organs from adult fish and different treatments of zebrafish embryos including morpholino injections and administration of chemicals. Using geNorm and rank aggregation analysis we demonstrated that EREs have a higher overall expression stability compared to the commonly used reference genes. Moreover, we propose a limited set of ERE reference targets (hatn10, dna15ta1 and loopern4), that show stable expression throughout the wide range of experiments in this study, as strong candidates for inclusion as reference targets for qPCR normalization in future zebrafish expression studies. Our applied strategy to find and evaluate candidate expressed repeat elements for RT-qPCR data normalization has high potential to be used also for other species.  相似文献   

20.
We performed a gene expression study using RT-qPCR in Staphylococcus aureus. The influence of normalization method was investigated. We confirmed that a recent standard, using more reference genes, was the best normalization strategy. The application of the most commonly used reference genes in 2011 (gyrB and 16S rRNA gene) failed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号