首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant (13)C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. (13)C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of delta-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong (13)C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant (13)C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

2.
The diversity of ammonia-oxidizing bacteria in aquatic sediments was studied by retrieving ammonia monooxygenase and methane monooxygenase gene sequences. Methanotrophs dominated freshwater sediments, while beta-proteobacterial ammonia oxidizers dominated marine sediments. These results suggest that gamma-proteobacteria such as Nitrosococcus oceani are minor members of marine sediment ammonia-oxidizing communities.  相似文献   

3.
The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburgfjorden, Svalbard) was characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes. The SRB community was dominated by members of the Desulfosarcina-Desulfococcus group. This group accounted for up to 73% of the SRB detected and up to 70% of the SRB rRNA detected. The predominance was shown to be a common feature for different stations along the coast of Svalbard. In a top-to-bottom approach we aimed to further resolve the composition of this large group of SRB by using probes for cultivated genera. While this approach failed, directed cloning of probe-targeted genes encoding 16S rRNA was successful and resulted in sequences which were all affiliated with the Desulfosarcina-Desulfococcus group. A group of clone sequences (group SVAL1) most closely related to Desulfosarcina variabilis (91.2% sequence similarity) was dominant and was shown to be most abundant in situ, accounting for up to 54. 8% of the total SRB detected. A comparison of the two methods used for quantification showed that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5 mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface. Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1) day(-1)), decreased by a factor of 3 within the first 2 cm, and were relatively constant in deeper layers.  相似文献   

4.
Influences of infaunal burrows constructed by the polychaete (Tylorrhynchus heterochaetus) on O(2) concentrations and community structures and abundances of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in intertidal sediments were analyzed by the combined use of a 16S rRNA gene-based molecular approach and microelectrodes. The microelectrode measurements performed in an experimental system developed in an aquarium showed direct evidence of O(2) transport down to a depth of 350 mm of the sediment through a burrow. The 16S rRNA gene-cloning analysis revealed that the betaproteobacterial AOB communities in the sediment surface and the burrow walls were dominated by Nitrosomonas sp. strain Nm143-like sequences, and most of the clones in Nitrospira-like NOB clone libraries of the sediment surface and the burrow walls were related to the Nitrospira marina lineage. Furthermore, we investigated vertical distributions of AOB and NOB in the infaunal burrow walls and the bulk sediments by real-time quantitative PCR (Q-PCR) assay. The AOB and Nitrospira-like NOB-specific 16S rRNA gene copy numbers in the burrow walls were comparable with those in the sediment surfaces. These numbers in the burrow wall at a depth of 50 to 55 mm from the surface were, however, higher than those in the bulk sediment at the same depth. The microelectrode measurements showed higher NH(4)(+) consumption activity at the burrow wall than those at the surrounding sediment. This result was consistent with the results of microcosm experiments showing that the consumption rates of NH(4)(+) and total inorganic nitrogen increased with increasing infaunal density in the sediment. These results clearly demonstrated that the infaunal burrows stimulated O(2) transport into the sediment in which otherwise reducing conditions prevailed, resulting in development of high NH(4)(+) consumption capacity. Consequently, the infaunal burrow became an important site for NH(4)(+) consumption in the intertidal sediment.  相似文献   

5.
6.
The concentrations of methanethiol (MSH) and 3-mercaptopropionate (3-MPA) increased for a period of up to 24 h in fresh slurries of anoxic Biscayne Bay sediments. Other endogenous thiols such as glutathione (GSH) deceased immediately after slurry preparation or were not detectable at all. The maximum concentrations reached by 3-MPA and MSH were sometimes as high as 1 M, but were usually in the 100 to 300 nM range. After the initial increases, the concentrations of these thiols decreased rapidly to nearly constant levels of 20 nM for MSH and < 1nM for 3-MPA. In pre-incubated slurries, which had constant levels of thiols, the addition of microbial inhibitors including tungstate, molybdate, chloroform, and a mixture of chloramphenicol plus tetracycline caused MSH and 3-MPA to accumulate steadily. In the presence of inhibitors, accumulation rates of MSH ranged from 18 to 730 nM · d-1 and those of 3-MPA ranged from 0 to 185 nM · d-1. Tungstate and chloroform generally gave the highest accumulation rates, while molybdate gave the lowest, possibly due to its complexation with sulfhydryl compounds. BES (2-Bromoethanesulfonate) was also tested for its effects, but no 3-MPA and only trace amounts (19 nM · d-1) of MSH accumulated with this treatment. However, additions of BES (10 mM) to sulfidic sediments caused significant (8 M · d-1) production of 2-mercaptoethanesulfonate (HS-CoM). Formation of HS-CoM was abiotic and was due to sulfide attack on the bromine atom in BES. The accumulations of 3-MPA and MSH in the presence of several different microbial inhibitors, suggests that these thiols may turn over in anoxic sediments. The relatively low concentrations of thiols observed in pore water profiles may be due to continuous microbial removal of these compounds. Much larger amounts of thiols were associated with sediment particles than present in the pore water. Evidence is presented which suggests that bound thiols may be exchangeable with the porewater, and therefore potentially available for microbial consumption.  相似文献   

7.
To elucidate the geomicrobiological factors controlling nitrification in salt marsh sediments, a comprehensive approach involving sediment geochemistry, process rate measurements, and quantification of the genetic potential for nitrification was applied to three contrasting salt marsh habitats: areas colonized by the tall (TS) or short (SS) form of Spartina alterniflora and unvegetated creek banks (CBs). Nitrification and denitrification potential rates were strongly correlated with one another and with macrofaunal burrow abundance, indicating that coupled nitrification-denitrification was enhanced by macrofaunal burrowing activity. Ammonia monooxygenase (amoA) gene copy numbers were used to estimate the ammonia-oxidizing bacterial population size (5.6 x 10(4) to 1.3 x 10(6) g of wet sediment(-1)), which correlated with nitrification potentials and was 1 order of magnitude higher for TS and CB than for SS. TS and CB sediments also had higher Fe(III) content, higher Fe(III)-to-total reduced sulfur ratios, higher Fe(III) reduction rates, and lower dissolved sulfides than SS sediments. Iron(III) content and reduction rates were positively correlated with nitrification and denitrification potential and amoA gene copy number. Laboratory slurry incubations supported field data, confirming that increased amounts of Fe(III) relieved sulfide inhibition of nitrification. We propose that macrofaunal burrowing and high concentrations of Fe(III) stimulate nitrifying bacterial populations, and thus may increase nitrogen removal through coupled nitrification-denitrification in salt marsh sediments.  相似文献   

8.
A polyphasic, culture-independent study was conducted to investigate the abundance and population structure of ammonia-oxidizing bacteria (AOB) in canal sediments receiving wastewater discharge. The abundance of AOB ranged from 0.2 to 1.9% and 1.6 to 5.7% of the total bacterial fraction by real-time PCR and immunofluorescence staining, respectively. Clone analysis and restriction endonuclease analysis revealed that the AOB communities influenced by the wastewater discharge were dominated by Nitrosomonas, were similar to each other, and were less diverse than the communities outside of the immediate discharge zone.  相似文献   

9.
Bacteriophages are the most abundant biological life forms on Earth. However, relatively little is known regarding which bacteriophages infect and exploit which bacteria. A recent meta-analysis showed that empirically measured phage-bacteria infection networks are often significantly nested, on average, and not modular. A perfectly nested network is one in which phages can be ordered from specialist to generalist such that the host range of a given phage is a subset of the host range of the subsequent phage in the ordering. The same meta-analysis hypothesized that modularity, in which groups of phages specialize on distinct groups of hosts, should emerge at larger geographic and/or taxonomic scales. In this paper, we evaluate the largest known phage-bacteria interaction data set, representing the interaction of 215 phage types with 286 host types sampled from geographically separated sites in the Atlantic Ocean. We find that this interaction network is highly modular. In addition, some of the modules identified in this data set are nested or contain submodules, indicating the presence of multi-scale structure, as hypothesized in the earlier meta-analysis. We examine the role of geography in driving these patterns and find evidence that the host range of phages and the phage permissibility of bacteria is driven, in part, by geographic separation. We conclude by discussing approaches to disentangle the roles of ecology and evolution in driving complex patterns of interaction between phages and bacteria.  相似文献   

10.
为探究攀枝花干热河谷区农田土壤氨氧化古菌(Ammonia oxidizing archaea,AOA)与氨氧化细菌(Ammonia oxidizing bacteria,AOB)群落对海拔高度的响应特征,深入认识该区域的氮素循环过程。以攀枝花米易县不同海拔(1600 m、1800 m和2000 m)农田红壤为研究对象,运用化学分析和末端限制性片段长度多态性(Terminal restriction fragment length polymorphism,T-RFLP)分别测定土壤理化性质、AOA和AOB群落组成及多样性,研究不同海拔农田土壤中AOA和AOB群落变异及其驱动因子。研究结果显示,不同海拔农田土壤pH均小于7,土壤有机碳(SOC)、全氮(TN)、速效钾(AK)和铵态氮(NH4+-N)含量随海拔升高而降低,碱解氮(AN)、有效磷(AP)和硝态氮(NO3--N)含量随海拔升高先增加后降低;随海拔升高,AOA群落多样性指数增加,而AOB群落多样性指数先增加后降低;AOA以亚硝基球菌属(Nitrososphaera)为优势菌群,AOB以亚硝化螺菌属(Nitrosospira)为优势菌群;土壤有机碳(SOC)、速效钾(AK)和硝态氮(NO3--N)是影响该区域农田土壤AOA和AOB群落发育的主要因子。总体而言,攀枝花干热河谷区不同海拔农田土壤AOA和AOB群落结构变化明显,土壤硝态氮、速效钾和有机碳是影响AOA和AOB群落结构变异的主要因子;研究结果可为揭示干热河谷区农田红壤氮循环相关微生物的海拔分布格局提供理论依据。  相似文献   

11.
12.
13.
We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.  相似文献   

14.
To assess links between betaproteobacterial ammonia-oxidizing bacteria (AOB) in marine sediment and in overlying water, communities in Loch Duich, Scotland, were characterized by analysis of clone libraries and denaturant gradient gel electrophoresis of 16S rRNA gene fragments. Nitrosospira cluster 1-like sequences were isolated from both environments, but different sequence types dominated water and sediment samples. Detailed phylogenetic analysis of marine Nitrosospira cluster 1-like sequences in Loch Duich and surrounding regions suggests the existence of at least two different phylogenetic subgroups, potentially indicative of new lineages within the betaproteobacterial AOB, representing different marine ecotypes.  相似文献   

15.
Profound biogeochemical responses of anoxic sediments to the fluctuation of dissolved oxygen (DO) concentration in overlaying water are often observed, despite oxygen having a limited permeability in sediments. This contradiction is indicative of previously unrecognized mechanism that bridges the oxic and anoxic sediment layers. Using sediments from an urban river suffering from long-term polycyclic aromatic hydrocarbons (PAHs) contamination, we analyzed the physicochemical and microbial responses to artificially elevated DO (eDO) in the overlying water over 9 weeks of incubation. Significant changes in key environmental parameters and microbial diversity were detected over the 0–6 cm sediment depth, along with accelerated degradation of PAHs, despite that eDO only increased the porewater DO in the millimeter subfacial layer. The dynamics of physicochemical and microbial properties coincided well with significantly increased presence of centimeter-long sulfide-oxidizing cable bacteria filaments under eDO, and were predominantly driven by cable bacteria metabolic activities. Phylogenetic ecological network analyses further revealed that eDO reinforced cable bacteria associated interspecific interactions with functional microorganisms such as sulfate reducers, PAHs degraders, and electroactive microbes, suggesting enhanced microbial syntrophy taking advantage of cable bacteria metabolism for the regeneration of SO42− and long-distance electron transfer. Together, our results suggest cable bacteria may mediate the impacts of eDO in anaerobic sediments by altering sediment physiochemical properties and by reinforcing community interactions. Our findings highlight the ecological importance of cable bacteria in sediments.Subject terms: Freshwater ecology, Water microbiology, Community ecology  相似文献   

16.
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.  相似文献   

17.
Adherent bacteria in heavy metal contaminated marine sediments   总被引:1,自引:0,他引:1  
Gillan DC  Pernet P 《Biofouling》2007,23(1-2):1-13
The eubacterial communities adherent to sediment particles were studied in heavy metal contaminated coastal sediments. Six sampling sites on the Belgian continental plate and presenting various metal loads, granulometries, and organic matter content, were compared. The results indicated that the total microbial biomass (attached + free-living bacteria) was negatively correlated to HCl-extractable metal levels (p<0.05) and that the percentage of cells adherent to sediment particles was close to 100% in every site even in highly contaminated sediments. Consequently, it seems that heavy metal contamination does affect total bacterial biomass in marine sediments but that the ratio between attached and free living microorganisms is not affected. The composition of the eubacterial communities adherent to the fine fraction of the sediments (<150 microm) was determined using fluorescent in situ hybridisation (FISH). The FISH results indicated that the proportion of gamma- and delta-Proteobacteria, and Cytophaga-Flexibacter-Bacteroides (CFB) bacteria, was not related to the HCl extractable metal levels. Most of the 79 complete 16S rRNA sequences obtained from the attached microbial communities were classified in the gamma- and delta-Proteobacteria and in the CFB bacteria. A large proportion of the attached gamma-Proteobacterial sequences found in this study (56%) was included in the uncultivated GMS clades that are indigenous to marine sediments.  相似文献   

18.
艾比湖湿地三种植物根际土壤氨氧化细菌群落的多样性   总被引:1,自引:0,他引:1  
摘要:【目的】以艾比湖湿地盐节木(Halocnemum strobilaceum)、芦苇(Reed)及盐角草(Salicornia)三种植物为对象,研究其根际土壤氨氧化细菌(AOB)的群落多样性。【方法】利用PCR-RFLP的方法,构建氨氧化细菌amoA基因克隆文库,进行系统发育分析。结合三种植物根际理化因子特点,探讨三种植物根际AOB群落结构组成的特点。【结果】通过序列多态性分析表明,三种植物根际土壤AOB amoA基因克隆文库中的所有序列均属于β亚纲(β-Proteobacteria)中的亚硝化单胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺菌属(Nitrosospira)。三个AOB amoA基因克隆文库分别包括9个OTUs、12个OTUs和7个OTUs,其文库覆盖度均达99%以上,代表性强。三个文库的丰富度、Chao1指数、ACE指数、Shannon指数均为R>H>S。【结论】三种植物的AOB多样性为芦苇>盐节木>盐角草,并且其最优氨氧化菌群各不相同。本研究为系统认识艾比湖湿地植物根际氨氧化细菌群落多样性和结构组成提供了基础。  相似文献   

19.
Isolation of ammonia-oxidizing autotrophic bacteria   总被引:18,自引:0,他引:18  
  相似文献   

20.
Bacteria in sediments from the surface aerobic layer (0–1 cm) and a deeper anaerobic layer (20–21 cm) of a seagrass bed were examined in section by transmission electron microscopy. Bacteria with a Gram-negative ultrastructure made up 90% of bacteria in the surface layer, and Gram-positive bacteria comprised 10%. In the anaerobic zone, Gram-negative bacteria comprised 70% and Gram-positive bacteria 30% of the bacterial population. These differences were highly significant and support predictions of these proportions made from muramic acid measurements and direct counting with fluorescence microscopy. Most cells were enveloped in extracellular slime layers or envelopes, some with considerable structural complexity. The trophic value to animals of these envelopes is discussed. A unique organism with spines was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号