首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES--To examine whether road traffic in a big city has a direct effect on pulmonary function and respiratory symptoms in children. DESIGN--Cross sectional study. SETTING--Of all 7445 fourth grade children (aged 9-11 years) in Munich, 6537 were examined. Of the children with German nationality and the same residence during the past five years and known exposure data, 4678 questionnaires and 4320 pulmonary function tests could be analysed. MAIN OUTCOME MEASURES--Variables of pulmonary function by forced expiration and respiratory symptoms reported in a questionnaire; census data on car traffic collected in the school district. RESULTS--Density of car traffic ranged from 7000 to 125,000 cars per 24 hours. Multiple regression analysis of peak expiratory flow showed a significant decrease of 0.71% (95% confidence interval 1.08% to 0.33%) per increase of 25,000 cars daily passing through the school district on the main road. Maximum expiratory flow when 25% vital capacity had been expired was decreased by 0.68% (1.11% to 0.25%). In contrast, response to cold air challenge was not increased. The adjusted odds ratio for the cumulative prevalence of recurrent wheezing with the same exposure was 1.08 (1.01 to 1.16). Cumulative prevalence of recurrent dyspnoea was increased, with an odds ratio of 1.10 (1.00 to 1.20). Lifetime prevalence of asthma (odds ratio 1.04; 0.89 to 1.21) and recurrent bronchitis (1.05; 0.98 to 1.12) were not significantly increased. CONCLUSIONS--High rates of road traffic diminish forced expiratory flow and increase respiratory symptoms in children.  相似文献   

2.
3.
Ascites, a complicating feature of many diseases of the liver and peritoneum, commonly causes dyspnea. The mechanism of this symptom, however, is uncertain. In the present study, progressively increasing ascites was induced in anesthetized dogs, and the hypothesis was initially tested that ascites increases the impedance on the diaphragm and, so, adversely affects the lung-expanding action of the muscle. Ascites produced a gradual increase in abdominal elastance and an expansion of the lower rib cage. Concomitantly, the caudal displacement of the diaphragm and the fall in airway opening pressure during isolated stimulation of the phrenic nerves decreased markedly; transdiaphragmatic pressure during phrenic stimulation also decreased. To assess the adaptation to ascites of the respiratory system overall, we subsequently measured the changes in lung volume, the arterial blood gases, and the electromyogram of the parasternal intercostal muscles during spontaneous breathing. Tidal volume and minute ventilation decreased progressively as ascites increased, leading to an increase in arterial PCO2 and parasternal intercostal inspiratory activity. It is concluded that 1) ascites, acting through an increase in abdominal elastance and an expansion of the lower rib cage, impairs the lung-expanding action of the diaphragm; 2) this impairment elicits a compensatory increase in neural drive to the inspiratory muscles, but the compensation is not sufficient to maintain ventilation; and 3) dyspnea in this setting results in part from the dissociation between increased neural drive and decreased ventilation.  相似文献   

4.
Although ascites causes abdominal expansion, its effects on abdominal muscle function are uncertain. In the present study, progressively increasing ascites was induced in supine anesthetized dogs, and the changes in abdominal (DeltaPab) and airway opening (DeltaPao) pressure obtained during stimulation of the internal oblique and transversus abdominis muscles were measured; the changes in internal oblique muscle length were also measured. As ascites increased from 0 to 100 ml/kg body wt, Pab and muscle length during relaxation increased. DeltaPab also showed a threefold increase (P < 0.001). However, DeltaPao decreased (P < 0.001). When ascites increased further to 200 ml/kg, resting muscle length continued to increase and muscle shortening during stimulation became very small so that active muscle length was 155% of the resting muscle length in the control condition. Concomitantly, DeltaPab returned to the control value, and DeltaPao continued to decrease. Similar results were obtained with the animals in the head-up posture, although the decrease in DeltaPao appeared only when ascites was greater than 125 ml/kg. It is concluded that 1) ascites adversely affects the expiratory action of the abdominal muscles on the lung; 2) this effect results primarily from the increase in diaphragm elastance; and 3) when ascites is severe, the abdomen cross-sectional area is also increased and the abdominal muscles are excessively lengthened so that their active pressure-generating ability itself is reduced.  相似文献   

5.
6.
7.
Influence of upper airway negative-pressure change on the respiratory activity of various upper airway muscles was investigated in 13 anesthetized rabbits. Phasic inspiratory activity increased or appeared during virtually all negative-pressure trials in nasolabial, cricothyroid, and posterior cricoarytenoid muscles. No phasic inspiratory activity was seen in the sternothyroid (ST) and sternohyoid (SH) muscles before negative-pressure applications but appeared during 80% of trials in ST and 62% of trials in SH. During maintained negative pressure, a gradual decline in activity was often observed in the nasolabial and laryngeal muscles, whereas a rapid decline in activity was seen in the cervical strap muscles. Reflex effects of negative pressure was markedly reduced or abolished by sectioning the internal branch of the superior laryngeal nerve bilaterally. Reflex augmentation of upper airway muscle activity reported here may have functional significance in the maintenance of upper airway patency. It could prevent upper airway collapse when negative pressure swings in the upper airway increase or facilitate recovery when large negative pressure swings are produced by obstructed inspiratory efforts.  相似文献   

8.
Anaerobic metabolism of the respiratory muscles   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Breathing is a complex act requiring the coordinated activity of multiple groups of muscles. Thoracic and abdominal respiratory muscles expand and contract the lungs, whereas pharyngeal and laryngeal respiratory muscles maintain upper airway patency and regulate upper airway resistance. An appreciation of the importance of the latter muscle group in maintaining ventilatory homeostasis and in the pathophysiology of sleep apnea has led to extensive studies examining the neural regulation of pharyngeal dilator muscles. The present review examines the role of heterogeneity in motoneuron and muscle properties in determining the diversity in the electrical and mechanical behaviors of thoracic compared with pharyngeal muscle groups. Specifically, phrenic and hypoglossal motoneuron electrophysiological properties influence whether and the extent to which these neurons will fire in response to a given synaptic input arising from chemo- and mechanoreceptors and from respiratory and nonrespiratory pattern generators. Furthermore, thoracic and pharyngeal muscle properties determine the mechanical response to motoneuronal activity, including the speed of contraction, relationships between motoneuron firing frequency and force production, and whether force is maintained during repetitive activation. Heterogeneity in the functional capabilities of these motoneurons and muscles is in turn determined by diversity of their structural and biochemical properties. Thus, intrinsic properties of respiratory motoneurons and muscles act in concert with neuronal drives in defining the complex electrical and mechanical behavior of pharyngeal and thoracic respiratory motor systems.  相似文献   

11.
The latest data on the mechanisms of the control of respiratory muscles are reviewed. For systematization of these mechanisms, it is suggested to classify them into three levels: the autonomous (basic) level, which controls pulmonary ventilation under conditions of eupnea; the adaptive level, which coordinates breathing with other motor functions and an additional load on the respiratory system; and the voluntary level, which is specific for humans. Mechanisms of breathing control when performing the speech function, as well as during an increase in the resistance to breathing, are considered as an example of the adaptive level of control. In this connection, much attention is paid to the function of muscles of the upper airways, whose role in the breathing act is often ignored.  相似文献   

12.
13.
14.
Some controversy exists in the literature as to whether or not diaphragmatic glycogen is utilized during exercise. In this study male Sprague-Dawley rats were used to determine whether prolonged treadmill exercise would result in a significant reduction of glycogen concentration in the respiratory muscles. Untrained rats were run to exhaustion at a speed of 24 m/min, up a 10% grade. Run time averaged 48:30 min. After exercise a significant reduction in glycogen was observed in the diaphragm (43% of control), intercostals (43%), heart (39%), and plantaris (76%). In the diaphragm a significant reduction was shown in both types I and II fibers using the periodic acid-Schiff (PAS) stain for glycogen. These findings show that muscles with vastly different aerobic capacities utilize endogenous glycogen during moderately intense submaximal endurance exercise and that the costal diaphragm muscle is not an exception as has recently been suggested.  相似文献   

15.
A detailed gross anatomical study of the innervation of the respiratory muscles was made on twenty mature, male, Single Comb White Leghorn chickens. The aim was to demonstrate the general pattern and degree of terminal branching of the intercostal and lumbar nerves that innervate respiratory muscles. The point of entry for all nerves was on the medial face of the proximal third of the belly of the muscles, except for the transversus abdominis and costopulmonary muscles. The nerves were not always accompanied by blood vessels at the point of entry but both were invariably related at their terminal branches within the muscle belly and the tendon or aponeurosis. Within the muscle, primary, secondary, tertiary, and quarternary subdivisions of nerves coursed parallel to the muscle fibers, but some were tortuous. Plexus formation and/or segmental nerve anastomosis was most evident in strongly active expiratory and inspiratory muscles, i.e., all abdominal muscles and the m. costisternalis pars major. A craniocaudal gradient in the size and development of the contractile mass of the intercostal muscles was observed. The mm. intercostales interni increased in size in the caudal intercostal spaces, while the reverse was true for the mm. intercostales externi. Variable forms and sizes of lateroventral abdominal muscles were observed and the m. rectus abdominis was consistently present. The mm. intercostales interni and externi received branches from both the nn. intercostales interni and externi.  相似文献   

16.
17.
In this study, we searched for signs of thixotropic behavior in human rib cage respiratory muscles. If rib cage respiratory muscles possess thixotropic properties similar to those seen in other skeletal muscles in animals and humans, we expect resting rib cage circumference would be temporarily changed after deep rib cage inflations or deflations and that these aftereffects would be particularly pronounced in trials that combine conditioning deep inflations or deflations with forceful isometric contractions of the respiratory muscles. We used induction plethysmography to obtain a continuous relative measure of rib cage circumference changes during quiet breathing in 12 healthy subjects. Rib cage position at the end of the expiratory phase (EEP) was used as an index of resting rib cage circumference. Comparisons were made between EEP values of five spontaneous breaths immediately before and after six types of conditioning maneuvers: deep inspiration (DI); deep expiration (DE); DI combined with forceful effort to inspire (FII) or expire (FEI); and DE combined with forceful effort to inspire (FIE) or expire (FEE), both with temporary airway occlusion. The aftereffects of the conditioning maneuvers on EEP values were consistent with the supposition that human respiratory muscles possess thixotropic properties. EEP values were significantly enhanced after all conditioning maneuvers involving DI, and the aftereffects were particularly pronounced in the FII and FEI trials. In contrast, EEP values were reduced after DE maneuvers. The aftereffects were statistically significant for the FEE and FIE, but not DE, trials. It is suggested that respiratory muscle thixotropy may contribute to the pulmonary hyperinflation seen in patients with chronic obstructive pulmonary disease.  相似文献   

18.
Previous studies have shown that in normal humans the change in airway opening pressure (DeltaPao) produced by all the parasternal and external intercostal muscles during a maximal contraction is approximately -18 cmH(2)O. This value is substantially less negative than DeltaPao values recorded during maximal static inspiratory efforts in subjects with complete diaphragmatic paralysis. In the present study, therefore, the respiratory effects of the two prominent inspiratory muscles of the neck, the sternomastoids and the scalenes, were evaluated by application of the Maxwell reciprocity theorem. Seven healthy subjects were placed in a computed tomographic scanner to determine the fractional changes in muscle length during inflation from functional residual capacity to total lung capacity and the masses of the muscles. Inflation induced greater shortening of the scalenes than the sternomastoids in every subject. The inspiratory mechanical advantage of the scalenes thus averaged (mean +/- SE) 3.4 +/- 0.4%/l, whereas that of the sternomastoids was 2.0 +/- 0.3%/l (P < 0.001). However, sternomastoid muscle mass was much larger than scalene muscle mass. As a result, DeltaPao generated by a maximal contraction of either muscle would be 3-4 cmH(2)O, which is about the same as DeltaPao generated by the parasternal intercostals in all interspaces.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号