首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin purified from the body-wall muscle-defective mutant E675 of the nematode. Caenorhabditis elegans, has heavy chain polypeptides which can be distinguished on the basis of molecular weight. On SDS-polyacrylamide gels, bands are found at 210,000 and 203,000 daltons. This is in contrast to myosin from the wild-type, N2, which has a single heavy chain band at 210,000 daltons. Both heavy chains of E675 are found in body-wall muscle (Epstein, Waterston and Brenner, 1974).When native myosin from E675 is fractionated on hydroxyapatite, it is separated into myosin containing predominantly one or the other molecular weight heavy chain and myosin containing a mixture of the heavy chains. Comparison of the CNBr fragments of myosin that contains predominantly 210,000 dalton heavy chains with those of myosin that contains predominantly 203,000 dalton heavy chains reveals multiple differences. These differences are not explained by the difference in molecular weight of the heavy chains, but may be explained if each type of heavy chain is the product of a different structural gene. Furthermore, because there are fractions which exhibit >80% 210,000 or >80% 203,000 dalton heavy chain, there is myosin which is homogeneous for each of the heavy chains.Although N2 myosin has only a single molecular weight heavy chain, it too is fractionated by hydroxyapatite. By comparing the CNBr fragments of different myosin fractions, we show that N2, like E675, has two kinds of heavy chains.E190, a body-wall muscle-defective mutant in the same complementation group as E675, is lacking the myosin heavy chain affected by the e675 mutation. This property has allowed us to determine by co-purification of labeled E190 myosin in the presence of excess, unlabeled E675 myosin that most, if not all, of the myosin that contains two different molecular weight heavy chains is due to the formation of complexes between homogeneous myosins and not to a heterogeneous myosin.  相似文献   

2.
3.
Caenorhabditis elegans male spicule morphogenesis requires the coordinated cellular behaviors of several types of cells. We found that the spicule neurons and sheath cells, although important for spicule function, are dispensable for spicule morphology. In contrast, the spicule socket cells are essential for both spicule elongation and formation of spicule cuticle. The socket cells are not only necessary but also sufficient to produce spicule cuticle. This functional aspect of socket cells is genetically separable from their function in mediating spicule elongation: elongated spicules with defective spicule cuticle can be formed. During spicule morphogenesis, the expression of an egl-17::GFP reporter gene is found in the spicule socket cells and its expression appears to be regulated in the socket cells. Mutants defective in TGF-beta signaling display a crumpled spicules phenotype as a result of failure of socket cell movement during spicule morphogenesis. These observations suggest that both the FGF and the TGF-beta signaling pathways might be involved in spicule elongation.  相似文献   

4.
Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line- or M-line-specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans.  相似文献   

5.
We have studied some passive electrical properties of uterine smooth muscle to determine whether a change in electrical parameters accompanies gap junction formation at delivery. The length constant of the longitudinal myometrium increased from 2.6 +/- 0.8 mm (X +/- SD) before term to 3.7 +/- 1 mm in tissues from delivering animals. The basis of the change was a 33% decrease in internal resistance and a 46% increase in membrane resistance. Axial current flow in an electrical syncytium such as myometrium is impeded by the cytoplasm of individual cells plus the junctions between cells. Measurement of the longitudinal impedance indicated that the specific resistance of the myoplasmic component was constant at 319 +/- 113 omega . cm before term and 340 +/- 93 omega . cm at delivery. However, a decrease in junctional resistance was apparent from 323 +/- 161 omega . cm to 134 +/- 64 omega . cm at delivery. 1.5-2 d after delivery, the junctional resistance was increased, as was the myoplasmic resistance. Thin-section electron microscopy of some of the same muscle samples showed that gap junctions were present in significantly greater numbers in the delivering tissues. Therefore, our results support the hypothesis that gap junction formation at delivery is associated with improved electrical coupling of uterine smooth muscle.  相似文献   

6.
Pancreatic beta-cells constitute a well-communicating multicellular network that permits a coordinated and synchronized signal transmission within the islet of Langerhans that is necessary for proper insulin release. Gap junctions are the molecular keys that mediate functional cellular connections, which are responsible for electrical and metabolic coupling in the majority of cell types. Although the role of gap junctions in beta-cell electrical coupling is well documented, metabolic communication is still a matter of discussion. Here, we have addressed this issue by use of a fluorescence recovery after photobleaching (FRAP) approach. This technique has been validated as a reliable and noninvasive approach to monitor functional gap junctions in real time. We show that control pancreatic islet cells did not exchange a gap junction-permeant molecule in either clustered cells or intact islets of Langerhans under conditions that allowed cell-to-cell exchange of current-carrying ions. Conversely, we have detected that the same probe was extensively transferred between islet cells of transgenic mice expressing connexin 32 (Cx32) that have enhanced junctional coupling properties. The results indicate that the electrical coupling of native islet cells is more extensive than dye communication. Dye-coupling domains in islet cells appear more restricted than previously inferred with other methods.  相似文献   

7.
The innexins represent a highly conserved protein family, the members of which make up the structural components of gap junctions in invertebrates. We have isolated and characterized a Caenorhabditis elegans gene inx-6 that encodes a new member of the innexin family required for the electrical coupling of pharyngeal muscles. inx-6(rr5) mutants complete embryogenesis without detectable abnormalities at restrictive temperature but fail to initiate postembryonic development after hatching. inx-6 is expressed in the pharynx at all larval stages, and an INX-6::GFP fusion protein showed a punctate expression pattern characteristic of gap junction proteins localized to plasma membrane plaques. Video recording and electropharyngeograms revealed that in inx-6(rr5) mutants the anterior pharyngeal (procorpus) muscles were electrically coupled to a lesser degree than the posterior metacorpus muscles, which caused a premature relaxation in the anterior pharynx and interfered with feeding. Dye-coupling experiments indicate that the gap junctions that link the procorpus to the metacorpus are functionally compromised in inx-6(rr5) mutants. We also show that another C. elegans innexin, EAT-5, can partially substitute for INX-6 function in vivo, underscoring their likely analogous function.  相似文献   

8.
Gap junctions, which are low-resistance intercellular pathways, may contribute to normal embryogenesis by allowing cell-to-cell passage of as yet unidentified regulatory or inductive signals. But little is known about the properties of newly formed single junctional channels which are the basis of the communicating junctions. Reported here are the first direct measurements of current passing through single junctional channels as they form. Individual pairs of embryonic Xenopus muscle cells in culture were manipulated into contact, allowing control of the onset time and area of cellular contact, and current was recorded with the patch clamp technique. The opening of single channels which pass current between the two cells at a conductance of about 100 pS was observed within minutes of cell-cell contact. The channels opened one-at-a-time, and once formed, remained open for long periods of time, with infrequent brief closures. This suggests that formation of electrical coupling between two cells proceeds by addition of single conducting junctional channels one channel-at-a-time.  相似文献   

9.
10.
11.
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.  相似文献   

12.
13.
Innexins are the proposed structural components of gap junctions in invertebrates. Antibodies that specifically recognize the Caenorhabditis elegans innexin protein INX-3 were generated and used to examine the patterns of inx-3 gene expression and the subcellular sites of INX-3 localization. INX-3 is first detected in two-cell embryos, concentrated at the intercellular interface, and is expressed ubiquitously throughout the cellular proliferation phase of embryogenesis. During embryonic morphogenesis, INX-3 expression becomes more restricted. Postembryonically, INX-3 is expressed transiently in several cell types, while expression in the posterior pharynx persists throughout development. Through immuno-EM techniques, INX-3 was observed at gap junctions in the adult pharynx, providing supporting evidence that innexins are components of gap junctions. An inx-3 mutant was isolated through a combined genetic and immunocytochemical screen. Homozygous inx-3 mutants exhibit defects during embryonic morphogenesis. At the comma stage of early morphogenesis, variable numbers of cells are lost from the anterior of inx-3(lw68) mutants. A range of terminal defects is seen later in embryogenesis, including localized rupture of the hypodermis, failure of the midbody to elongate properly, abnormal contacts between hypodermal cells, and failure of the pharynx to attach to the anterior of the animal.  相似文献   

14.
Summary Cells from the ventricles of 7-day chick embryos were aggregated into spheroidal clusters by 48 hr of culture on a gyratory platform. All aggregates beat spontaneously and rhythmically. Microelectrode impalement of widely separated cells within aggregates indicated that they were coupled, as evidenced by a mean coupling ratio (V 2/V 1) of 0.81±0.09, and by simultaneity of intrinsic electrical activity (action potentials and subthreshold voltage fluctuation). In freeze-fracture preparations, the cell surfaces contained numerous small groups of intramembrane protein (IMP) particles, arranged in macular clusters, and linear and circular arrays. Using the criterion of 4 clustered IMP particles to define a minimal gap junction, 0.27% of the total P-face examined was devoted to gap junctional area. Within such clusters particles were packed at about 8200/m2; in nonjunctional regions, particles were scattered at a density of about 2000/m2. When exposed to cycloheximide (CHX: 50g/ml) for 24–48 hr, coupling ratio declined to 0.44. This decrease could be attributed largely to leakiness of the nonjunctional membrane. Aggregates continued to beat rhythmically and in a coordinated fashion even after 72 hr in inhibitor. However, between 3–21 hr in CHX gap junctional area declined to 0.10%, and all particle clusters disappeared from the P-faces of aggregates in CHX for 24 or 48 hr. Neither macular nor linear particle arrays were seen. We conclude that organized gap junctions are unnecessary for electrotonic coupling between embryonic heart cells. These findings support the idea that low-resistance cell-to-cell pathways may exist as isolated channels scattered throughout the area of closely apposed plasma membranes.  相似文献   

15.
Increased expression of connexin43 gap junctions in smooth muscle cells (SMC) is implicated in the response to primary arterial injury and in the early stages of human coronary atherosclerosis, but the relevance of these findings to restenosis is unknown. Here we investigated the expression of connexin43 gap junctions in restenotic aortas of cholesterol-fed double injured rabbits. Immunofluorescence confocal microscopy was used to evaluate temporal and spatial expression patterns and to characterize the major expressing cell type. Parallel studies were conducted by electron microscopy, in situ hybridization and Northern blot analysis. Connexin43 gap junctions- and connexin43 mRNA-expressing cells were abundant in the media of non-injured control aorta. Following primary injury and 6 weeks cholesterol diet, connexin43 gap junctions were found distributed throughout the primary intimal layer; although medial expression was reduced, the overall mRNA expression level remained similar to that of non-injured controls. After secondary injury, no major change in distribution pattern of connexin43 gap junctions occurred up to day 10, when marked neointimal labeling was observed. This overall pattern persisted, though with some diminution, at later stages. On the mRNA level total connexin43 mRNA expression declined to about 40% of control values within 4 days after secondary injury (P < 0.05), but subsequently increased four-fold, attaining levels double that of non-injured controls in the 10-day group (P < 0.005 versus control and 4 days). At later stages mRNA expression levels returned to values similar to those of non-injured controls. At all stages, connexin43 gap junctions were localized to the SMC, not to macrophages. We conclude that the enhanced gap junction formation may contribute to the coordination of the response of SMC after secondary injury, particularly in the early phase of restenosis.  相似文献   

16.
In the small nematode, Caenorhabditis elegans, mutants with a disorganized myofilament lattice structure have been identified by polarized light and electron microscopy. Genetic analysis places the mutations in 12 complementation groups which are distributed over the six linkage groups of C. elegans. The phenotypes are described for the mutants from the 9 complementation groups not previously reported on in detail. Most are paralyzed, but some exhibit essentially normal movement; mutants of two loci show changes only in later larval stages and adulthood. Morphological studies show that, in general, all the members of a complementation group show similar changes in muscle structure and that these changes are distinctive for that group. In mutants of several genes, disorganization of the myofilament lattice is general with no one component of the lattice more obviously altered than others. In mutants of other genes specific structures are prominently altered. In one of the instances where thick filaments appear to be abnormal, double mutants combining mutations in this gene (unc-82 IV) with mutations in the gene for a myosin heavy chain (MacLeod et al., 1977a,b) or paramyosin (Waterston et al., 1977) were used to show that the unc-82 gene product probably affects thick filament assembly through its actions on paramyosin. Some possible implications of the morphological features of the mutants as well as the conclusions derived from the genetic studies are discussed.  相似文献   

17.
Pak SC  Tsu C  Luke CJ  Askew YS  Silverman GA 《Biochemistry》2006,45(14):4474-4480
Members of the intracellular serpin family may help regulate apoptosis, tumor progression, and metastasis. However, their in vivo functions in the context of a whole organism have not been easily defined. To better understand the biology of these serpins, we initiated a comparative genomics study using Caenorhabditis elegans as a model organism. Previous in silico analysis suggested that the C. elegans genome harbors nine serpin-like sequences bearing significant similarities to the human clade B intracellular serpins. However, only five genes appear to encode full-length serpins with intact reactive site loops. To determine if this was the case, we have cloned and expressed a putative inhibitory-type C. elegans serpin, srp-3. Analysis of SRP-3 inhibitory activity indicated that SRP-3 was a potent inhibitor of the serine peptidases, chymotrypsin and cathepsin G. Spatial and temporal expression studies using GFP and LacZ promoter fusions indicated that SRP-3 was expressed primarily in the anterior body wall muscles, suggesting that it may play a role in muscle cell homeostasis. Combined with previous studies showing that SRP-2 is an inhibitor of the serine peptidase, granzyme B, and lysosomal cysteine peptidases, these data suggested that C. elegans expressed at least two inhibitory-type serpins with nonoverlapping expression and inhibitory profiles. Moreover, the profiles of these clade L serpins in C. elegans share significant similarities with the profiles of clade B intracellular serpin members in higher vertebrates. This degree of conservation suggests that C. elegans should prove to be a valuable resource in the study of metazoan intracellular serpin function.  相似文献   

18.
Chinese hamster Wg3-h-o cells which were descended from DON cells have been mutagenized and selected for derivatives defective in metabolic cooperation via gap junctions (i.e., mec-). The selection protocol included four consecutive cycles of cocultivating mutagenized cells, deficient in hypoxanthine phosphoribosyltransferase (HPRT) and wild-type cells in the presence of thioguanine (cf Slack, C, Morgan, R H M & Hooper, M L, Exp cell res 117 (1978) 195-205) [8]. We carried out the last two selection cycles in the presence of 1 mM dibutyryl cyclic adenosine monophosphate (db-cAMP). The isolated Chinese hamster CI-4 cells which expressed the mec- phenotype most stringently showed the following characteristics: 1. In standard culture medium no cell-cell coupling was detected among CI-4 cells when assayed by injections of the fluorescent dye Lucifer yellow or by electrical measurements. Between 73 and 100% of the mec+ parental cells were coupled under these conditions. Up to 14% positive contacts were found between CI-4 cells and Chinese hamster Don cells (mec+). Confluent CI-4 cells grown in the presence of 1 mM db-cAMP showed 9% coupled cells. 2. No gap junction plaques were found on electron micrographs of freeze-fractured, confluent CI-4 cells. The mec+ parental cells showed small gap junction plaques (0.013% of the total cell surface analyzed). 3. CI-4 cells exhibited 16% positive contacts and the parental Wg3-h-o cells showed 92% positive contacts in autoradiographic measurements of metabolic cooperation with DON cells. On an extracellular matrix, prepared from normal embryonic fibroblasts, metabolic cooperation between CI-4 and DON cells was autoradiographically measured to be 68%. Other cells of spontaneous mec- phenotype (for example mouse L cells or human fibrosarcoma HT1080 cells) also appeared to exhibit increased metabolic cooperation when grown on an extracellular matrix and assayed by autoradiographic measurements. When tested by Lucifer yellow injections, however, only very few positive contacts were found for CI-4/DON cell pairs and no positive contacts were found among mouse L cells grown on an extracellular matrix. 4. The mec- defect in the genome of CI-4 cells was cured in somatic cell hybrids with mouse embryonic fibroblasts or with mouse embryonal carcinoma cells. The results of isozyme and karyotype studies of mec-, as well as mec+ somatic cell hybrids suggest that mouse chromosome 16 may be involved in complementation of the mec- defect.  相似文献   

19.
Programmed cell death, or apoptosis, is a genetically controlled process of cell suicide that is a common fate during an animal's life. In metazoans, apoptotic cells are rapidly removed from the body through the process of phagocytosis. Genetic analyses probing the mechanisms controlling the engulfment of apoptotic cells were pioneered in the nematode Caenorhabditis elegans. So far, at least seven genes have been identified that are required for the recognition and engulfment of apoptotic cells and have been shown to function in two partially redundant signaling pathways. Molecular characterization of their gene products has lead to the finding that similar genes act to control the same processes in other organisms, including mammals. In this paper, we review these exciting findings in C. elegans and discuss their implications in understanding the clearance of apoptotic cells in mammals.  相似文献   

20.
The fully open state of heterotypic gap junction channels formed by pairing cells expressing connexin 32 (Cx32) with those expressing connexin 26 (Cx26) rectifies in a way that cannot be predicted from the current-voltage (I-V) relation of either homotypic channel. Using a molecular genetic analysis, we demonstrate that charged amino acids positioned in the amino terminus (M1 and D2) and first extracellular loop (E42) are major determinants of the current-voltage relation of the fully open state of homotypic and heterotypic channels formed by Cx26 and Cx32. The observed I-V relations of wild-type and mutant channels were closely approximated by those obtained with the electrodiffusive model of Chen and Eisenberg (Chen, D., and R. Eisenberg. 1993. Biophys. J. 64:1405-1421), which solves the Poisson-Nernst-Plank equations in one dimension using charge distribution models inferred from the molecular analyses. The rectification of the Cx32/Cx26 heterotypic channel results from the asymmetry in the number and position of charged residues. The model required the incorporation of a partial charge located near the channel surface to approximate the linear I-V relation observed for the Cx32*Cx26E1 homotypic channel. The best candidate amino acid providing this partial charge is the conserved tryptophan residue (W3). Incorporation of the partial charge of residue W3 and the negative charge of the Cx32E41 residue into the charge profile used in the Poisson-Nernst-Plank model of homotypic Cx32 and heterotypic Cx26/Cx32 channels resulted in I-V relations that closely resembled the observed I-V relations of these channels. We further demonstrate that some channel substates rectify. We suggest that the conformational changes associated with transjunctional voltage (V(j))-dependent gating to these substates involves a narrowing of the cytoplasmic entry of the channel that increases the electrostatic effect of charges in the amino terminus. The rectification that is observed in the Cx32/Cx26 heterotypic channel is similar although less steep than that reported for some rectifying electrical synapses. We propose that a similar electrostatic mechanism, which results in rectification through the open and substates of heterotypic channels, is sufficient to explain the properties of steeply rectifying electrical synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号