首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression of the nonsegmented negative-strand RNA viruses is determined by the position of each gene relative to that the single 3' promoter. The general order of genes among all of the viruses of the order Mononegavirales is highly conserved. In previous work we generated recombinant viruses in which the order of the three central genes of the prototypical rhabdovirus, vesicular stomatitis virus, was rearranged to all six possible permutations. While some of these viruses replicated less well than the wild type when assayed by single-step growth analyses in BSC-1 cells, others replicated as well or slightly better. In the work reported here, we used competition assays to compare the fitness of the viruses with alternative gene orders to that of the wild-type (wt) virus. We found that the relative fitness of these recombinant viruses depended on the multiplicity of infection (MOI) but not on the population size. However, during competitions at low MOI, when complementation cannot compensate for the defects of the populations with rearranged genomes, the virus with the wt gene order was always the most fit.  相似文献   

2.
3.
4.
Despite their high frequency of RNA recombination, the plus-strand coronaviruses have a characteristic, strictly conserved genome organization with the essential genes occurring in the order 5'-polymerase (pol)-S-E-M-N-3'. We have investigated the significance of this remarkable conservation by rearrangement of the murine coronavirus genome through targeted recombination. Thus, viruses were prepared with the following gene order: 5'-pol-S-M-E-N-3', 5'-pol-S-N-E-M-3', 5'-pol-M-S-E-N-3', and 5'-pol-E-M-S-N-3'. All of these viruses were surprisingly viable, and most viruses replicated in cell culture with growth characteristics similar to those of the parental virus. The recombinant virus with the gene order 5'-pol-E-M-S-N-3' was also tested for the ability to replicate in the natural host, the mouse. The results indicate that the canonical coronavirus genome organization is not essential for replication in vitro and in vivo. Deliberate rearrangement of the viral genes may be useful in the generation of attenuated coronaviruses, which due to their reduced risk of generating viable viruses by recombination with circulating field viruses, would make safer vaccines.  相似文献   

5.
6.
Viruses of the order Mononegavirales encompass life-threatening pathogens with single-stranded segmented or nonsegmented negative-strand RNA genomes. The RNA genomes are characterized by highly conserved sequences at the extreme untranslated 3' and 5' termini that are most important for virus infection and viral RNA synthetic processes. The 3' terminal genome regions of negative-strand viruses such as vesicular stomatitis virus, Sendai virus, or influenza virus contain a high number of conserved U and G nucleotides, and synthetic oligoribonucleotides encoding such sequences stimulate sequence-dependent cytokine responses via TLR7 and TLR8. Immune cells responding to such sequences include NK cells, NK/T cells, plasmacytoid, and myeloid dendritic cells, as well as monocytes and B cells. Strong Th1 and pro-inflammatory cytokine responses are also induced upon in vivo application of oligoribonucleotides. It appears possible that the presence of highly conserved untranslated terminal regions in the viral genome fulfilling fundamental functions for the viral replication may enable the host to induce directed innate immune defense mechanisms, by allowing pathogen detection through essential RNA regions that the virus cannot readily mutate.  相似文献   

7.
8.
9.
10.
Gao Q  Park MS  Palese P 《Journal of virology》2008,82(6):2692-2698
  相似文献   

11.
Borna disease virus (BDV) is an enveloped virus with a genome organization characteristic of Mononegavirales. However, based on its unique features, BDV is considered the prototypic member of a new virus family, Bornaviridae, within the order Mononegavirales. We have described the establishment of a reverse genetics system for the rescue of BDV RNA analogues, or minigenomes, that is based on the use of polymerase I/polymerase II. Using this BDV minigenome rescue system, we have examined the functional implications of the reported sequence heterogeneity found at the 5' and 3' termini of the BDV genome and also defined the minimal BDV genomic promoter within the 3'-terminal 25 nucleotides. Our results suggest that the accumulation of RNA genome species containing truncations of one to three nucleotides at their 3' termini may contribute to modulate BDV RNA replication and gene expression during long-term persistence.  相似文献   

12.
Generation of measles virus with a segmented RNA genome   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

13.
A human rotavirus (isolate M) with an atypical electropherotype with 14 apparent bands of double-stranded RNA was isolated from a chronically infected immunodeficient child. MA-104 cell culture adaptation showed that the M isolate was a mixture of viruses containing standard genes (M0) or rearranged genes: M1 (containing a rearranged gene 7) and M2 (containing rearranged genes 7 and 11). The rearranged gene 7 of virus M1 (gene 7R) was very unusual because it contained two complete open reading frames (ORF). Moreover, serial propagation of virus M1 in cell culture indicated that gene 7R rapidly evolved, leading to a virus with a deleted gene 7R (gene 7RDelta). Gene 7RDelta coded for a modified NSP3 protein (NSP3m) of 599 amino acids (aa) containing a repetition of aa 8 to 296. The virus M3 (containing gene 7RDelta) was not defective in cell culture and actually produced NSP3m. The rearranged gene 11 (gene 11R) had a more usual pattern, with a partial duplication leading to a normal ORF followed by a long 3' untranslated region. The rearrangement in gene 11R was almost identical to some of those previously described, suggesting that there is a hot spot for gene rearrangements at a specific location on the sequence. It has been suggested that in some cases the existence of short direct repeats could favor the occurrence of rearrangement at a specific site. The computer modeling of gene 7 and 11 mRNAs led us to propose a new mechanism for gene rearrangements in which secondary structures, besides short direct repeats, might facilitate and direct the transfer of the RNA polymerase from the 5' to the 3' end of the plus-strand RNA template during the replication step.  相似文献   

14.
15.
Several different mammalian neurotropic viruses produce an age-dependent encephalitis characterized by more severe disease in younger hosts. To elucidate potential factors that contribute to age-dependent resistance to lethal viral encephalitis, we compared central nervous system (CNS) gene expression in neonatal and weanling mice that were either mock infected or infected intracerebrally with a recombinant strain, dsTE12Q, of the prototype alphavirus Sindbis virus. In 1-day-old mice, infection with dsTE12Q resulted in rapidly fatal disease associated with high CNS viral titers and extensive CNS apoptosis, whereas in 4-week-old mice, dsTE12Q infection resulted in asymptomatic infection with lower CNS virus titers and undetectable CNS apoptosis. GeneChip expression comparisons of mock-infected neonatal and weanling mouse brains revealed developmental regulation of the mRNA expression of numerous genes, including some apoptosis regulatory genes, such as the proapoptotic molecules caspase-3 and TRAF4, which are downregulated during development, and the neuroprotective chemokine, fractalkine, which is upregulated during postnatal development. In parallel with increased neurovirulence and increased viral replication, Sindbis virus infection in 1-day-old mice resulted in both a greater number of host inflammatory genes with altered expression and greater changes in levels of host inflammatory gene expression than infection in 4-week-old mice. Only one inflammatory response gene, an expressed sequence tag similar to human ISG12, increased by a greater magnitude in infected 4-week-old mouse brains than in infected 1-day-old mouse brains. Furthermore, we found that enforced neuronal ISG12 expression results in a significant delay in Sindbis virus-induced death in neonatal mice. Together, our data identify genes that are developmentally regulated in the CNS and genes that are differentially regulated in the brains of different aged mice in response to Sindbis virus infection.  相似文献   

16.
17.
18.
19.
20.
Recombinant plasmid-based retroviral expression vectors were constructed using a modified spleen necrosis virus (SNV) containing the Herpes simplex virus thymidine kinase gene promoter controlling the expression of the Tn5 neomycin phosphotransferase II gene (NPTII gene). The human renin (HRn) gene (hrn) was inserted into the 5' end of the SNV sequences such that in concatemeric plasmid DNA its expression was controlled by the strong promoter in the SNV long terminal repeat (LTR). Dog cells transfected with the concatemeric plasmid DNA secreted a small amount of a HRn-like 43-kDa protein. After cotransfection of chicken cells with concatemeric plasmid DNA and proviral DNA of reticuloendotheliosis virus strain A, infectious stocks of viruses were recovered. Cells infected with the virus carrying the viral LTR-hrn gene oriented for expression secreted the 43-kDa HRn-like protein at about 100-fold higher levels than the cells transfected with the plasmid DNAs. Biological activity of secreted HRn was determined by measuring levels of angiotensin I generated by incubating culture media with either a porcine or human angiotensinogen substrate. Infected dog cells produce about 40 ng of enzymatically active HRn per 10(6) cells per 24 h. These data indicate that retroviral expression vectors provide a good system for obtaining the secretion of high levels of enzymatically active heterologous proteins from mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号