首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

2.
The large hysteresis observed during the acid-base titration of poly(dG). poly (dC) was studied by CD and potentiometric scanning curves. Intermediate scanning loops as well as the equilibrium and metastable branches of the hysteresis loop have been determined. The potentiometric titrations showed, however, that the various complexes were not discrete entities, but were linked in "polycomplexes" as had been already suggested. This prevented a thermodynamic study of the system. The acid-base titration was further investigated as a function of ionic strength and temperature. The pK's showed considerably lower ionic strength dependence than observed for polyribonucleotide complexes. The thermal transitions permitted to establish the relative stabilities of the various complexes between pH 2.5 and pH 12.0.  相似文献   

3.
A nucleic acid helix-destabilizing protein has been purified from Saccharomyces cerevisiae using affinity chromatographic techniques. Crude protein extracts at low ionic strength (approx. 0.05 M) were applied sequentially to tandem columns of native DNA-cellulose, aminophenyl-phosphoryl-UMP-agarose, poly(I . C)-agarose, poly(U)-cellulose and denatured DNA-cellulose. The 2 M NaCl eluant of the poly(U)-cellulose column was dialyzed to low ionic strength and recycled through native DNA-cellulose, poly(I . C)-agarose and poly(U)-cellulose. Purified helix-destabilizing protein eluted from the poly(U)-cellulose between 0.1 and 0.5 M NaCl. On the basis of enzymatic activity, immunological cross-reactivity, mobility on SDS gels, amino acid analysis and preliminary peptide mapping experiments, this material was identified as an isozymic fraction of glyceraldehyde-3-phosphate dehydrogenase. The major crystallizable isozyme of this enzyme from yeast is, however, considerably more acidic than the helix-destabilizing protein, and displays significantly lower helix-destabilizing activity. Stoichiometric levels of the isolated protein at low (approx. 0.01) ionic strength depress the Tm of poly(A-U) and poly [d(A-T)] by as much as 28 and 22 degrees C, respectively. Longer double helices, poly(A . U) and Clostridium perfringens DNA are also denatured by the helix-destabilizing protein, but at relatively slow rates. The binding of this protein to [3H]-poly(U) on nitrocellulose filters in [Na+]-dependent, with a 50% reduction at 0.09 M NaCl. Based on its effect on the circular dichroism spectrum of poly(A), the protein was shown to distort the conformation of the polynucleotide chain. An analogous protein from mammalian cells, P8, was also shown to depress poly(A-U) Tm.  相似文献   

4.
We report the results of direct measurements by atomic force microscopy of solvent-driven structural transitions within polyadenylic acid (poly(A)). Both atomic force microscopy imaging and pulling measurements reveal complex strand arrangements within poly(A) induced by acidic pH conditions, with a clear fraction of double-stranded molecules that increases as pH decreases. Among these complex structures, force spectroscopy identified molecules that, upon stretching, displayed two distinct plateau features in the force-extension curves. These plateaus exhibit transition forces similar to those previously observed in native double-stranded DNA (dsDNA). However, the width of the first plateau in the force-extension curves of poly(A) varies significantly, and on average is shorter than the canonical 70% of initial length corresponding to the B-S transition of dsDNA. Also, similar to findings in dsDNA, stretching and relaxing elasticity profiles of dspoly(A) at forces below the mechanical melting transition overlap but reveal hysteresis when the molecules are stretched above the mechanical melting transition. These results strongly suggest that under acidic pH conditions, poly(A) can form duplexes that are mechanically stable. We hypothesize that under acidic conditions, similar structures may be formed by the cellular poly(A) tails on mRNA.  相似文献   

5.
The Zimm-Bragg theory is extended to treat the melting of the triple helix poly (A + 2U) for a solution with a 1 : 2 mole ratio of poly A to poly U. Only the case for long chains is considered. For a given set of parameters the theory predicts the fraction of segments in the triple helix, double helix, and random coil states as a function of temperature. Four nucleation parameters are introduced to describe the two order–disorder transitions (poly (A + 2U) ? poly A + 2 poly U and poly (A + U) ? poly A + poly U) and the single order–order transition (poly (A + 2U) ? poly (A + U) + poly U). A relation between the nucleation parameters is obtained which reduces the number of independent parameters to three. A method for determining these parameters from experiment is presented. From the previously published data of Blake, Massoulié and Fresco8 for [Na+] = 0.04, we find σT = 6.0 × 10?4, σD = 1.0 × 10?3, and σσ* = 1.5 × 10?3. σT and σD are the nucleation parameters for nucleating a triple helix and double helix, respectively, from a random coil region. σσ* is the nucleation parameter for nucleating a triple helix from a double helix and a single strand. Melting curves are generated from the theory and compared with the experimental melting curves.  相似文献   

6.
The model polynucleotide poly(dG-dC).poly(dG-dC) (polyGC) was titrated with a strong acid (HCl) in aqueous unbuffered solutions and in the quaternary w/o microemulsion CTAB/n-pentanol/n-hexane/water. The titrations, performed at several concentrations of NaCl in the range 0.005 to 0.600 M, were followed by recording the modifications of the electronic absorption and of the CD spectra (210< or = lambda < or =350 nm) upon addition of the acid. In solution, the polynucleotide undergoes two acid-induced transitions, neither of which corresponds to denaturation of the duplex to single coil. The first transition leads to the Hoogsteen type synG.C+ duplex, while the second leads to the C+.C duplex. The initial B-form of polyGC was recovered by back-titration with NaOH. The apparent pKa values were obtained for both steps of the titration, at all salt concentrations. A reasonably linear dependence of pKa1 and pKa2 from p[NaCl] was obtained, with both pKa values decreasing with increasing ionic strength. In microemulsion, at salt concentrations < or = 0.300 M, an acid-induced transition was observed, matching the first conformational transition recorded also in solution. However, further addition of acid led to denaturation of the protonated duplex. Renaturation of polyGC was obtained by back-titration with NaOH. At salt concentrations > 0.300 M, polyGC is present as a mixture of B-form and psi- aggregates, that slowly separate from the microemulsion. The acid titration induces at first a conformational transition similar to the one observed at low salt or in solution, then denaturation occurs, which is however preceded by the appearance of a transient conformation, that has been tentatively classified as a left-handed Z double helix.  相似文献   

7.
Dietmar Prschke 《Biopolymers》1971,10(10):1989-2013
The properties of oligonucleotide helices of adeuylic- and uridylic acid oligomers have been investigated by measurements of hypo-and hyperchromieity. High ionic strengths favor the formation of triple helices. Thus, the double helix-coil transition can be studied (without interference by triple helices) only at low ionic-strength. A “phase diagram” is given representing the Tm-values of the various transitions at different ionic strengths for the system A(pA)17 + U(pU)17. Oligonucleolides of chain lengths <8 always form both double and triple helices at the nucleotide concentrations required for base pairing. For this reason the double helix-coil transition without coupling of the triple helix equilibrium can only be measured for chain lengths higher than 7. Melting curves corresponding to this transition have been determined for chain lengths 8, 9, 10, 11, 14 and 18 at different concentrations. An increase in nucleotide concentration leads to an increase in melting temperature. The shorter the chain length the lower the Tm-value and the broader the helix-coil transition. The experimental transition curves have been analysed according to a staggering zipper model with consideration of the stacking of the adeuylic acid single strands and the electrostatic repulsion of tlip phosphate charges on opposite strands. The temperature dependence of the nucleation parameter has been accounted for by a slacking factor x. The stacking factor expresses the magnitude of the stacking enthalpy. By curve fitting xwas computed to be 0.7, corresponding to a stacking enthalpy of about S kcal/mole. The model described allows the reproduction of the experimental transition curves with relatively high accuracy. In an appendix the thermodynamic parameters of the stacking equilibrium of poly A and of the helix-coil equilibria of poly A + poly U at neutral pH are calculated (ΔHA = ?7.9 kcal/mole for the poly A stacking and ΔH12 = ?10.9 kcal/mole for the formation of the double helix from the randomly coiled single strands). A formula for the configurational entropy of polymers derived by Flory on the basis of a liquid lattice model is adapted to calculate the stacking entropies of adenylic oligomers.  相似文献   

8.
The influence of the ionic strength of solution on the DNA molecule protonation was studied by means of circular dichroism (CD), spectrophotometric and potentiometric titration methods over a wide range of the supporting electrolyte concentrations [( NaCl] = 0.0005 divided by 4 M). Consideration of the obtained CD spectra shown that the acidation of the solution induces two cooperative structural transitions in the double stranded DNA molecule in the pre-denaturation pH region. Further decrease in the solution pH results in acidic melting of the DNA molecule. Analysis of the potentiometric data shows that diluted DNA solutions exhibit marked buffer capacity at pH greater than 4.2. A concept of local pH dependent on the electrostatic potential in the vicinity of the polyion was used for interpreting the obtained results. A phase diagram, which describes the polymorphic transformations of the protonated macromolecule, was constructed in terms of pHloc and -log[Na+]. Consideration of this phase diagram allows to hypothesize that: 1) in the neutral diluted DNA solution with a very low supporting electrolyte content the macromolecule exists in a polymorphic state; 2) at [NaCl] greater than or equal to 0.001 M the acid-base equilibrium in the DNA molecule is invariant in respect to the ionic strength of the solution.  相似文献   

9.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

10.
The unusual salt-dependent behavior of the homodimeric flavoenzyme NADH oxidase from Thermus thermophilus in acidic pH has been studied using circular dichroism (CD) and sedimentation velocity. The native-like secondary and quaternary structures in acidic low ionic strength conditions were significantly perturbed by the addition of salts. The peptide region of the CD spectra showed a major salt-induced conformational change in the protein secondary structure. Sedimentation velocity experiments showed dissociation of the homodimeric structure of NADH oxidase in the presence of salt (>1 M). The new acidic conformation of the protein was stabilized by high ionic strength as indicated by a salt-induced increase in the melting temperature of the protein, and by a shift in the apparent pK(a) values of the conformational transition to a less acidic pH. Distortion of the dominant alpha-helical signal was expressed as the disappearance of the parallel polarized Moffitt exciton band at 208 nm without an accompanying loss of amplitude of n-->pi* electronic transitions at 222 nm. The unusual CD spectra correlated qualitatively with the theoretically calculated CD spectra of short alpha-helical structures and/or twisted beta-sheets. Differences between the experimentally obtained CD spectra and theoretical calculations (AGADIR) of the alpha-helical content of NADH oxidase indicate a role for non-local interactions in the protein conformation at high ionic strength and low pH. These findings indicate the importance of the homodimeric interface and electrostatic interactions for maintaining the structural integrity of this thermophilic protein.  相似文献   

11.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

12.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

13.
The triple-helix formation by the oligonucleotide (dA)12-x-(dT)12-x-(dT)12, where x is a hexaethylene glycol group, was investigated by thermal denaturation analysis and circular dichroism spectroscopy. Thermal denaturation analysis showed that this single-stranded oligonucleotide is able to fold back on itself twice to give a triple helix at low temperature. Upon an increase in the temperature, two cooperative transitions were observed: formation of a double-stranded structure with a dangling x-(dT)12 extremity, then formation of a single-stranded coil structure. Due to the intramolecular character of the transition, the triplex is much more stable than that formed by the reference mixture (dA)12 + 2(dT)12. In 0.1 M NaCl, the triplex-to-coil transition occurred at about 30 degrees C whereas the duplex-to-coil was at about 60 degrees C. Upon an increase in the salt, the increase of temperature corresponding to the triplex-to-duplex transition was larger than that of the duplex-to-coil transition. MgCl2 showed higher efficiency than NaCl to promote triplex or duplex formation. The thermodynamic parameters delta H and delta S were determined at various ionic strengths for both transitions. Both the enthalpy change and entropy change associated with triplex-to-duplex transition (Hoogsteen base pairing) were smaller than those associated to the duplex-to-coil transition (Watson-Crick base pairing). When the ionic strength increased, the parameters -delta H and -delta S showed a very small decrease for the duplex-to-coil transition whereas a strong increase was observed with the triplex-to-duplex transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Alkaline titrations of different samples of poly(dG).poly(dC) and of the constituent homopolymers poly(dG) and poly(dC) have been performed in 0.15 M NaCl and their CD spectra followed. Sample I contained a slight excess of poly(dC) (52% C: 48% G) and showed a single reversible transition (pK = 11.9) due to the dissociation of double stranded poly(dG).poly(dC). Sample II, containing an excess of poly(dG) (43% C: 57% G), showed two transitions (pK1 = 11.4, PK2 = 11.9) the first one being only partially reversible. Examination of the CD spectra along the alkaline titrations indicated the presence of another hydrogen-bonded complex of higher G content. Mixing curves performed at pH 8 have confirmed the presence of a 2G: 1C complex, besides the double stranded complex. It can be formed in amounts up to 30% by mixing the two homopolymers, alkali treatment and heating. The CD spectra of the two complexes have been computed from the CD data of the mixing curves. This permitted the determination of the concentrations of both complexes and homopolymers in all samples. The ratio of triple to double stranded complex is not only dependent on the G/C ratio of the sample, but also a function of the previous physico-chemical conditions. These results explain the variability of many properties of different poly(dG).poly(dC) samples observed by other workers.  相似文献   

15.
Conformational lability of poly(dG-m5dC):poly(dG-m5dC).   总被引:2,自引:2,他引:0       下载免费PDF全文
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions.  相似文献   

16.
J S Lee 《Nucleic acids research》1990,18(20):6057-6060
As with other guanine-rich sequences, poly[d(GGA)], poly[d(GA)] and poly[d(GAA)] probably form four-stranded or tetraplex structures. Thermal denaturation profiles were measured for these polymers at pH8 in the presence of Na+, NH4+, K+, Cs+, Mg2+, Ca2+ and Ba2+. For poly[d(GA)], Na+, NH4+, K+ stabilize the tetraplex to similar extents and the Tm increases with increasing ionic strength. In contrast the Tms with Mg2+, Ca2+ and Ba2+ are significantly different and reach maxima at about 5mM of cation. The tetraplex from poly [d(GAA)] behaves in a similar manner. Thermal denaturation profiles for poly[d(GGA)] yield transitions whose hyperchromicity depends both on the concentration and nature of the ion. A reversible cooperative transition is not observed at concentrations greater than 0.15M K+, 1mM Ca2+ or 0.3 mM Ba2+ and hysteresis is evident at some concentrations. These results are consistent with the idea that K+ and ions of a similar size can form a coordination complex with the 6-Keto group of eight guanines (G8-DNA). Unlike the tetraplex polymer this G8-DNA does not melt cooperatively.  相似文献   

17.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

18.
Immobilization of enzymes (penicillin amidase and alpha-chymotrypsin) in water-soluble nonstoichiometric polyeloctrolyte complexes (PEC) formed by poly(4-vinyl-N-ethylpyridinium bromide) (polycation) and polymethacrylic acid (polyanion) was carried out. Particles of these PEC consist of a nucleus formed by sequences of salt bonds between the units of oppositely charged polyelectrolytes and the hydrophylic shell formed by ionized groups of polyanions which is in excess in PEC. Such a structure of PEC particles results in a cooperative phase transitions of these systems at slight variations of pH and ionic strength. The work demonstrates phase diagrams of PEC solutions. The values of pH and ionic strength at which phase transitions in solutions of different PEC occur were elucidated. The decrease of pH value from 6.1 to 5.7 leads to reversible phase transition followed by a saltatory increase of Km for immobilized penicillin amidase by 5-10 fold depending on substrate used. The phase transition induced by ionic strength increase up to 0,27 M NaCl doesn't change significantly the Km-value of enzymic reaction. The phenomenon observed can be accounted for by the different structure of PEC particles. The catalytic properties of immobilized chymotrypsin were shown to depend on the loci of enzyme attachment. If the enzyme is bound to polyanion, neither conformational changes of the matrix nor phase transition in solution influence its accessibility for the protein inhibitor, but rather change the binding constant. If the enzyme is attached to polycation, i.e. included in the polycomplex nucleus, two fractions of enzymes accessible and inaccessible for protein inhibitor appear.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In contrast to poly(dG).poly(dC), which remains in the B-DNA conformation under all experimental conditions the polynucleotides with the strictly alternating guanine/cytosine or guanine/5'-methylcytosine sequences can change from the classical right-handed B-DNA structure to the left-handed Z-DNA structure when certain experimental conditions such as ionic strength or solvent composition are fulfilled. Up to now the investigation of the helix/coil transition of left-handed DNA structures was not possible because the transition temperature exceeds 98 degrees C. By applying moderate external pressure to the surface of the aqueous polymer solution in the sample cell the boiling point of the solvent water is shifted up the temperature scale without shifting the transition temperature, so that we can measure the helix/coil transition of the polynucleotides at all experimental conditions applied. It can thus be shown that the Z-DNA/coil transition is cooperative and reversible. The Tm is 125 degrees C for poly(dG-m5dC).poly(dG-m5dC) in 2mM Mg2+, 50mM Na+, pH 7.2 and 115 degrees c for poly[d(G-C)].poly[d(G-C)] in 3.04M Na+. The transition enthalpy per base pair was determined by the help of an adiabatic scanning microcalorimeter.  相似文献   

20.
The thermal denaturation of the synthetic high molecular weight double stranded polynucleotide poly(dA-dT) x poly(dA-dT) has been studied in aqueous buffered solution (Tris 1.0 mM; pH 7.8+/-0.2) in the presence of increasing concentrations of either Ni(2+) (borderline cation) or Cd(2+) (soft cation) at four different constant ionic strength values (NaCl), making use of UV and circular dichroism (CD) spectroscopies. The experimental results show that the B-type double helix of the polymer is stabilized against thermal denaturation in the presence of both cations at low concentrations, relative to the systems where only NaCl is present, in the same conditions of ionic strength and pH. The effect is more pronounced for Ni(2+) than for Cd(2+). At higher concentrations, both cations start to destabilize the double helix, with Cd cations inducing larger variations of T(m). In many cases, when denaturation starts, interstrand cross-linking occurs with formation of aggregates that precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号