首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of a new species of pelobionts Pelomyxa flava was studied by light and electron microscopy. The envelopes of P. flava are consist of a plasma membrane with a thick layer of weakly structured glycocalyx on its outer surface. Numerous flagella are often located at the apices of short conical pseudopodia. Kinetosomes of flagella reach length of 0.9 μm and are hollow with a pronounced central filament. The rootlet system is represented by three groups of microtubules: the radial, basal, and the microtubules of lateral root. The transitory zone is short and does not reach beyond the level of the cell surface; the axoneme is characterized by an unstable set of microtubules. Trophic stages of the P. flava life cycle are represented by binuclear cells; plasmotomy is performed at the tetranuclear stage. Nuclei have a granular structure. Fibrillar nuclear bodies are revealed in the karyoplasm. The nuclear envelope has a complex organization; on its surface, the outer membrane has a layer of electron-dense material that contacts with short microtubules located single-row at the surface of the nuclear envelope. Vesicles and cisterns of endoplasmic reticulum are located away from microtubules and are derivatives of the nuclear envelope. In the P. flava endoplasm, the presence of structural and digestive vacuoles and glycogen granules was found. Three types of prokaryotic cytobionts were revealed. Large multimembranous organelles reaching 5 μm in diameter were described for the first time. Peculiarities of the morphology and biology of P. flava compared to the previously studied Pelomyxa species are discussed.  相似文献   

2.
The structure of a new pelomyxa species was investigated on the level fo light and electron microscopy. The length of locomotive forms of Pelomyxa stagnalis reaches 800 μm. The thin layer of amorphous glycocalyx is located on the cell surface. Numerous nonfunctioning flagellae are revealed predominantly in the uroidal zone. The axoneme has a nonstable set of microtubules. No additional structures are present in the transition zone. The length of P. stagnalis flagella kinetosomes does not exceed 150 nm. Fifteen to twenty microtubules extend from the side surface of each kinetosome at a small angle to the cell surface. One of main components of the P. stagnalis cytoplasm are structural vacuoles. Glycogen bodies in cells are surrounded by flattened ER cisterns, which are often filled with electron-dense material. Cells of P. stagnalis were found to contain two species of prokaryote endobionts that differ in the peculiarities of their fine structure. The number of nuclei in cells of the P. stagnalis adult individuals can reach 50 or more. The nuclei are surrounded by a bilayer envelope formed by the multilaminar layer and by the outer layer composed of vesicles often filled with an electron-dense material. The nucleolus is usually single and is located in the center of the nucleus. In nuclei, predominantly in connection with nucleoli, bodies are formed that are formed by interlacing electron-dense strands.  相似文献   

3.
Cell organization of a multinuclear pelobiont Pelomyxa prima has been studied at the light and electron microscopic levels. Motile individuals demonstrate a characteristic drop-like or pyriform shape and reach 550 microkm in length. The cell cover is represented by a well-developed, morphologically differentiated glycocalyx 80-100 nm thick. The cytoplasm contains many structural vacuoles. The nuclei are of vertical type, numbering up to several nuclei in large individuals. Numerous cytoplasmic microtubules are associated with the external membrane of the nuclear envelope. Separate non-motile flagella are distributed throughout the cell surface, being more numerous in the posterior body end and uroidal zone of the protist. Basal bodies of the flagella are extremely long, being deeply immersed into the cytoplasm. These bodies are surrounded by a muff of electron-dense material, with numerous microtubules radiating from it. A compact bundle of microtubules starts from the base of a basal body axially into the cytoplasm. Besides, a band-like lateral microtubular rootlet is present. The number of microtubules in the axoneme of undulipodia is unstable. Neither mitochondria, nor Golgi complex were found. Two species of bacterial endocytobionts are present in the cytoplasm in considerable numbers.  相似文献   

4.
Specimens of Pelomyxa palustris from five collecting sites had numerous nonmotile flagella. The structures are called flagella because of morphological similarities to flagella and because P. palustris has affinities with amoeboid flagellates. Flagella were photographed on living cells and studied by transmission and scanning electron microscopy. From 64 to 742 flagella per cell were estimated from scanning electron microscopy of ten cells 204 to 1269 micron in length. The nonmotile flagella arise from basal granules which were, in one strain, surrounded by radiating electron-dense microtubules. This strain also had excess axonemal microtubules. Abundant cytoplasmic microtubules were arranged in several different patterns. In about half of the P. palustris cells in which nuclei were studied, microtubules were either apposed to the nuclear membrane in a parallel alignment (with some also radiating) or radiating from the nuclear membrane (with none parallel). Bacteria associated with nuclei were of three characteristic types: Gram-negative rods, Gram-positive rods, and large rods. All nuclei within a given trophozoite had similar perinuclear features. Recent proposals for separation of Pelomyxa to its own phylum (based on its proposed primitive, unique nature) can not be justified. Pelomyxa is a complex, highly specialized organism adapted to live in a specific fresh-water environment. Mastigamoebid amoeboid flagellates of the genera Mastigamoeba, Mastigella, Mastigina, and possibly Dinamoeba are placed with Pelomyxa within the order Pelobiontida Page, 1976, emend., containing two families. Pelomyxidae Schulze, 1877, and Mastigamoebidae Goldschmidt, 1907.  相似文献   

5.
The morphology of Mastigamoeba aspera, a typical species of the genus Mastigamoeba Schulze, 1875, was studied at the optical and electron microscopy level. During movement, M. aspera has an oval or pyriformic shape, with the motile flagella being located at the anterior end of mononuclear forms. In the process of movement, the mastigamoeba surface forms numerous conical or finger-shaped hyaline pseudopodia, whereas thel caudal cell end is usually transformed into a bulboid uroid. In M. aspera micropopulations, there are noted both mononuclear cells with flagella and multinuclear flagella-free individuals. The M. aspera plasma membrane has at its outer surface a hypertrophied glycocalix layer inhabited by numerous rod-shaped bacteria-ectobionts. The M. aspera nucleus is of vesicular type, with a large central spherical nucleolus. The flagellar apparatus is closely connected morphologically with the M. aspera nucleus. The basal flagella part is represented by a single kinetosome, from which radial microtubules and a lateral rootlet pass out into the cytoplasm. At the base of the kinetosome, there is located a compact center of organization of microtubules (COMT), in which there are immersed bases of the nuclear cone microtubules participating in formation of karyomastigont. The structure of the flagella axoneme corresponds to the formula 9(2)+2. The main volume of the M. aspera cytoplasm is occupied with digestive vacuoles. In addition, the cells contain numerous light-reflecting granules, as well as glycogen granules. Mitochondria, dictyosomes of the Golgi apparatus, and microbodies in the M. aspera cell cytoplasm are not revealed.  相似文献   

6.
ABSTRACT Specimens of Pelomyxa palustris from five collecting sites had numerous nonmotile flagella. The structures are called flagella because of morphological similarities to flagella and because P. palustris has affinities with amoeboid flagellates. Flagella were photographed on living cells and studied by transmission and scanning electron microscopy. From 64 to 742 flagella per cell were estimated from scanning electron microscopy of ten cells 204 to 1269 μm in length. The nonmotile flagella arise from basal granules which were, in one strain, surrounded by radiating electron-dense microtubules. This strain also had excess axonemal microtubules. Abundant cytoplasmic microtubules were arranged in several different patterns. In about half of the P. palustris cells in which nuclei were studied, microtubules were either apposed to the nuclear membrane in a parallel alignment (with some also radiating) or radiating from the nuclear membrane (with none parallel). Bacteria associated with nuclei were of three characteristic types: Gram-negative rods, Gram-positive rods, and large rods. All nuclei within a given trophozoite had similar perinuclear features. Recent proposals for separation of Pelomyxa to its own phylum (based on its proposed primitive, unique nature) can not be justified. Pelomyxa is a complex, highly specialized organism adapted to live in a specific fresh-water environment. Mastigamoebid amoeboid flagellates of the genera Mastigamoeba, Mastigella, Mastigina, and possibly Dinamoeba are placed with Pelomyxa within the order Pelobiontida Page, 1976, emend., containing two families. Pelomyxidae Schulze, 1877, and Mastigamoebidae Goldschmidt, 1907.  相似文献   

7.
Syndinium and related organisms which parasitize a number of invertebrates have been classified with dinoflagellates on the basis of the morphology of their zoospores. We demonstrate here that with respect to chromosome structure and chemistry as well as nuclear division, they differ fundamentally from free-living dinoflagellates. Alkaline fast green staining indicates the presence of basic proteins in Syndinium chromosomes. Chromatin fibers are about 30 Å thick and do not show the arrangement characteristic of dinoflagellate chromosomes. The four V-shaped chromosomes are permanently attached at their apexes to a specific area of the nuclear membrane through a kinetochore-like trilaminar disk inserted into an opening of the membrane. Microtubules connect the outer dense layer of each kinetochore to the bases of the two centrioles located in a pocket-shaped invagination of the nuclear envelope. During division kinetochores duplicate, and each sister kinetochore becomes attached to a different centriole. As the centrioles move apart, apparently pushed by a bundle of elongating microtubules (central spindle), the daughter chromosomes are passively pulled apart. During the process of elongation of the central spindle, the cytoplasmic groove on the nuclear surface which contains the central spindle sinks into the nuclear space and is transformed into a cylindrical cytoplasmic channel. A constriction in the persisting nuclear envelope leads to the formation of two daughter nuclei.  相似文献   

8.
Summary The larval stage of Polypodium hydriforme is planuliform and parasitic inside the growing oocytes of acipenserid fishes. The larva has inverted germ layers and a special envelope, the trophamnion, surrounding it within the host oocyte. The trophamnion is a giant unicellular provisory structure derived from the second polar body and performing both protective and digestive functions, clearly a result of adaptation to parasitism. The trophamnion displays microvilli on its inner surface, and irregular protrusions anchoring it to the yolk on its outer surface. Its cytoplasm contains long nuclear fragments, ribosomes, mitochondria, microtubules, microfilaments, prominent Golgi bodies, primary lysosomes, and secondary lysosomes with partially digested inclusions.The cells of the larva proper are poorly differentiated. No muscular, glandular, neural, interstitial, or nematocyst-forming cells have been found. The entodermal (outer layer) cells bear flagella and contain rough endoplasmic reticulum; the ectodermal (inner layer) cells lack cilia and contain an apical layer of acid mucopolysaccharid granules. The cells of both layers contain mitochondria, microtubules, and Golgi bodies; their nuclei display large nucleoli with nucleolonema-like structure, decondensed chromatin, and some perichromatin granules. At their apical rims, the ectodermal cells form septate junctions; laterally, the cells of both layers form simple contacts and occasional interdigitations. The lateral surfaces of entodermal cells are strengthened by microtubules.  相似文献   

9.
ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA   总被引:2,自引:2,他引:0       下载免费PDF全文
Various aspects of the ultrastructure of the dividing nuclei in the large radiosensitive amoeba Pelomyxa illinoisensis are demonstrated. Evidence of nuclear envelope breakdown is presented, and membrane fragments are traced throughout metaphase to envelope reconstruction in anaphase and telophase. Annuli in the nuclear envelope and its fragments are shown throughout mitosis. During metaphase and anaphase some 15 to 20 mitochondria are aligned at each end of the spindle, and are called polar mitochondria. The radioresistant amoebae Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria, and Pelomyxa illinoisensis is unique in this regard. The shape of the P. illinoisensis interphase nucleoli differs from that in the two radioresistant species, and certain aspects of nucleolar dissolution in the prophase vary. Helical coils in the interphase nucleoplasm are similar to those in the radioresistant amoebae. A "blister" phase in the flatly shaped telophase nuclei of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to the formation of the normal spherical interphase nuclei.  相似文献   

10.
A human intestinal spirochete isolated from a rectal biopsy specimen was morphologically characterized. The isolate was comma-shaped, 3-6 microm in length, 0.2 micro m in diameter and had tapered ends. The surface layer, external to the outer envelope, was amorphous. Four string-like periplasmic flagella with a diameter of 20 nm were presented at each end of the SDS-treated cells. Thin sections of the bacterial cell revealed a high-density cytoplasmic membrane and flagella in the periplasmic space between the cytoplasmic membrane and the outer envelope. Three segments of equal length were observed in some of the cells, while other cells were bi-segmented and more frequently observed.  相似文献   

11.
The nuclear envelope and associated structures from Xenopus laevis oocytes (stage VI) have been examined with the high resolution scanning electron microscope (SEM). The features of the inner and outer surfaces of the nuclear surface complex were revealed by manual isolation , whereas the membranes facing the perinuclear space (the space between the inner and outer nuclear membranes) were observed by fracturing the nuclear envelope in this plane and splaying the corresponding regions apart. Pore complexes were observed on all four membrane surfaces of this double-membraned structure. The densely packed pore complexes (55/micron2) are often clustered into triplets with shared walls (outer diameter = 90 nm; inner diameter = 25 nm; wall thickness = aproximately 30 nm), and project aproximately 20 nm above each membrane except where they are flush with the innermost surface. The pore complex appears to be an aggregate of four 30-nm subunits. The nuclear cortex, a fibrous layer (300 nm thickness) associated with the inner surface of the nuclear envelope, has been revealed by rapid fixation. This cortical layer is interrupted by funnel-shaped intranuclear channels (120-640 nm diam) which narrow towards the pore complexes. Chains of particles, arranged in spirals, are inserted into these intranuclear channels. The fibers associated with the innermost face of the nuclear envelope can be extraced with 0.6 MKI to reveal the pore complexes. A model of the nuclear surface complex, compiled from the visualization of all the membrane faces and the nuclear cortex, demonstrates relations between the intranuclear channels (3.2/micron2) and the numerous pore complexes, and the possibility of their role in nucleocytoplasmic interactions.  相似文献   

12.
Fine structure of the cell envelope layers of Flexibacter polymorphus.   总被引:1,自引:0,他引:1  
Electron microscopy of the filamentous gliding marine bacterium Flexibacter polymorphus demonstrated that the cell envelope consists of an electron-dense intermediate layer located between two unit-type membranes: an outer membrane, presumably of lipopolysaccharide, and an inner cytoplasmic membrane. Separation of living filaments into single cells by lysozyme suggests that a peptidoglycan moiety, possibly corresponding to the intermediate layer, might be situated between the two membranes. Cell division proceeds by invagination of the cytoplasmic membrane and intermediate layer forming a transverse septum. Cells generally fail to separate after the division process, so that a common outer membrane encloses all of the cells in a single filament. There is a continuous layer of macromolecular cup-shaped elements ('goblets') attached to the outermost surface of the lipopolysaccharide membrane. Tangential thin sections, as well as negatively stained preparations of envelope fragments (produced by sonication of autolyzed cells), showed that the goblets are arranged in a close-packed hexagonal array. The presence of electron-dense structures located between the outer and inner membranes, and exhibiting the same periodicity as the goblets, suggests that some part of the goblets penetrates the outer membrane and extends across the periplasmic space to the dense intermediate layer or cytoplasmic membrane. Spontaneous autolysis in aging cultures is accompanied by the formation and release into the culture medium of large numbers of outer membrane vesicles coated with globlets. A tentative reconstruction of the envelope of F. polymorphus, based on the fine-structural data, is presented.  相似文献   

13.
Cell envelope associations of Aquaspirillum serpens flagella.   总被引:12,自引:9,他引:3       下载免费PDF全文
Specific regions of the cell envelope associated with the flagellar basal complex of the gram-negative bacterium Aquaspirillum (Spirillum) serpens were identified by studying each of the envelope layers: outer membrane, mucopeptide, and plasma membrane. The outer membrane around the flagella insertion site was differentiated by concentric membrane rings and central perforations surrounded by a closely set collar. The perforations in both the outer membrane and the isolated mucopeptide layer were of a size accomodating the central rod of the basal complex but smaller than either the L or the P disks. The P disk of the complex may lie between the mucopeptide and the outer membrane. Electron microscopy of intact, spheroplasted, or autolyzed preparations did not adequately resolve the location of the inner pair of disks of the basal complex. Freeze-etching, however, revealed differentiation within the plasma membrane that appeared to be related to the basal complex. The convex fracture face showed depressions which are interpreted as impressions of a disk surrounded by a set of evenly spaced macromolecular studs and containing a central "plug" interpreted as the central rod. In thin sections, blebs, which appear to be associated with the flagellar apparatus, were seen on the cytoplasmic side of the plasma membrane. Superimposing the dimensions of the flagellar basal complex and the spacings of the cell envelope layers and using the position of the L disk within the outer membrane for reference, showed that the S disk might be within and the M disk beneath the plasma membrane. A tentative model was developed for comparison with that based on the structure of the Escherichia coli basal complex.  相似文献   

14.
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope.  相似文献   

15.
Summary The manchette or caudal tube has been examined in Stage 14 rat spermatids. The microtubules of the caudal tube have been found to be partially sheathed by smooth endoplasmic reticulum which appears to be continuous with the outer nuclear membrane of the redundant nuclear envelope. The microtubules in caudal regions of the manchette have been noted to be interconnected by links of unusual size and morphology. It is suggested that the caudal tube consists at this stage of development of two structures, membrane and microtubules and that the links between the microtubules appear to play a role in the structural order noted in the position of the tubules of the manchette. The possible significance of these links in relation to motility is discussed.Supported by a grant to E. A. MacKinnon by the Medical Research Council of Canada.  相似文献   

16.
At the ultrastructural level, cell division in Ochromonas danica exhibits several unusual features. During interphase, the basal bodies of the 2 flagella replicate and the chloroplast divides by constriction between its 2 lobes. The rhizoplast, which is a fibrous striated root attached to the basal body of the long flagellum, extends under the Golgi body to the surface of the nucleus in interphase cells. During proprophase, the Golgi body replicates, apparently by division, and a daughter rhizoplast, appears. During prophase, the 2 pairs of flagellar basal bodies, each with their accompanying rhizoplast and Golgi body, begin to separate. Three or 4 flagella are already present at this stage. At the same time, there is a proliferation of microtubules outside the nuclear envelope. Gaps then appear in the nuclear envelope, admitting the microtubules into the nucleus, where they form a spindle. A unique feature of mitosis in O. danica is that the 2 rhizoplasts form the poles of the spindle, spindle microtubules inserting directly onto the rhizoplasts. Some of the spindle microtubules extend from pole to pole; others appear to attach to the chromosomes. Kinetochores, however, are not present. The nuclear envelope breaks down, except, in the regions adjacent, to the chloroplasts; chloroplast ER remains intact throughout mitosis. At late anaphase the chromosomes come to lie against part of the chloroplast ER. This segment of the chloroplast ER appears to be incorporated as part of the reforming nuclear envelope, thus reestablishing the characteristic nuclear envelope—chloroplast ER association of the interphase cell.  相似文献   

17.
Fine structure of gametocytes and oocyst formation of Sarcocystis sp. from Quiscalus quiscula Linnaeus grown in cultured embryonic bovine kidney cells was studied. Microgametocytes measured up to ~5 μm diameter. During nuclear division of the microgametocyte, dense plaques were found adjacent to the nucleus just beneath the pellicle; occasionally microtubules were present within these plaques. These microtubules subsequently formed 2 basal bodies with a bundle of 4 microtubules between them. Microgametocytes also contained numerous mitochondria, micropores, granules, vacuoles, and free ribosomes. Each microgamete was covered by a single membrane and consisted of 2 basal bodies, 2 flagella, a bundle of 4 microtubules, a perforatorium, a mitochondrion, and a long dense nucleus which extended anteriorly and posteriorly beyond the mitochondrion. The bundle of 4 microtubules is thought to be the rudiment of a 3rd flagellum. Macrogametes were covered by a double membrane pellicle, and contained a large nucleus (~2.5 μm), vacuoles, and a dilated nuclear envelope connected with the rough endoplasmic reticulum (ER). In young macrogametes (~4 μm), the ER was arranged in concentric rows in the cortical region, and several sizes of dense granules were found in the cytoplasm. However, in later stages (~8 μm) the ER was irregularly arranged and was dilated with numerous cisternae; only large dark granules remained and a few scattered polysaccharide granules were found. No Golgi apparatus or micropores were observed. After the disappearance of dark granules 5 concentric membranes appeared. Four of these fused to form an oocyst wall composed of a dense outer layer (~66 nm thick) and a thin inner layer (~7 nm). The 5th or innermost membrane surrounded the cytoplasmic mass which was covered by a 2-layered pellicle and contained a nucleus, small amounts of ER, large vacuoles, and mitochondria. The sexual stages described greatly resemble those of Eimeria and Toxoplasma.  相似文献   

18.
The cell envelope structure of Salmonella typhimurium LT2, which has a heptose-deficient lipopolysaccharide (LPS), is significantly different from that of an isogenic strain with a normal LPS. The rough strain, when examined by freeze-etching, lacks most surface structures that are routinely present in the smooth strain (surface particles and flagella) and has few transmemberane studs in the cytoplasmic membrane (those present are generally found in aggregates), and the outer membrane cleavage is substantially stronger than that of the smooth strain. These envelope differences were independent of both growth temperature and culture age. Examination of ultrathin sections indicated that the rough strain has an outer membrane which forms a much more defined double-track artifact than the smooth strain. The addition of MgCl2 to the growth medium of the rough strain decreased the extent of outer membrane cleavage, and flagella became evident in freeze-etched preparations. The presence of supplemental MgCl2 in the growth medium, which resulted in these morphological changes in the rough strain, also produced growth at a previously restrictive temperature and a decrease in the leakage of periplasmic enzymes. The smooth strain was unaltered morphologically or physiologically by MgCl2 under identical conditions. It is suggested that the outer membrane of the rough strain is more planar.  相似文献   

19.
We reinvestigated major steps in the replicative cycle of pseudorabies virus (PrV) by electron microscopy of infected cultured cells. Virions attached to the cell surface were found in two distinct stages, with a distance of 12 to 14 nm or 6 to 8 nm between virion envelope and cell surface, respectively. After fusion of virion envelope and cell membrane, immunogold labeling using a monoclonal antibody against the envelope glycoprotein gE demonstrated a rapid drift of gE from the fusion site, indicating significant lateral movement of viral glycoproteins during or immediately after the fusion event. Naked nucleocapsids in the cytoplasm frequently appeared close to microtubules prior to transport to nuclear pores. At the nuclear pore, nucleocapsids invariably were oriented with one vertex pointing to the central granulum at a distance of about 40 nm and viral DNA appeared to be released via the vertex region into the nucleoplasm. Intranuclear maturation followed the typical herpesvirus nucleocapsid morphogenesis pathway. Regarding egress, our observations indicate that primary envelopment of nucleocapsids occurred at the inner leaflet of the nuclear membrane by budding into the perinuclear cisterna. This nuclear membrane-derived envelope exhibited a smooth surface which contrasts the envelope obtained by putative reenvelopment at tubular vesicles in the Golgi area which is characterized by distinct surface projections. Loss of the primary envelope and release of the nucleocapsid into the cytoplasm appeared to occur by fusion of envelope and outer leaflet of the nuclear membrane. Nucleocapsids were also found engulfed by both lamella of the nuclear membrane. This vesiculation process released nucleocapsids surrounded by two membranes into the cytoplasm. Our data also indicate that fusion between the two membranes then leads to release of naked nucleocapsids in the Golgi area. Egress of virions appeared to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. Our data thus support biochemical data and mutant virus studies of (i) two steps of attachment, (ii) the involvement of microtubules in the transport of nucleocapsids to the nuclear pore, and (iii) secondary envelopment in the trans-Golgi area in PrV infection.  相似文献   

20.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号