首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the in vitro maturation of CD49f(+)Thy1(-)CD45(-) (CD49f positive) fetal hepatic progenitor cells (HPCs) is supported by Thy1-positive mesenchymal cells derived from the fetal liver. These mesenchymal cell preparations contain two populations, one of a cuboidal shape and the other spindle shaped in morphology. In this study, we determined that the mucin-type transmembrane glycoprotein gp38 could distinguish cuboidal cells from spindle cells by immunocytochemistry. RT-PCR analysis revealed differences between isolated CD49f(+/-)Thy1(+)gp38(+)CD45(-) (gp38 positive) cells and CD49f(+/-)Thy1(+)gp38(-)CD45(-) (gp38 negative) cells, whereas both cells expressed mesenchymal cell markers. The coculture with gp38-positive cells promoted the maturation of CD49f-positive HPCs, which was estimated by positivity for periodic acid-Schiff (PAS) staining, whereas the coculture with gp38-negative cells maintained CD49f-positive HPCs negative for PAS staining. The expression of mature hepatocyte markers, such as tyrosine aminotransferase, tryptophan-2,3-dioxygenase, and glucose-6-phosphatase, were upregulated on HPCs by coculture with gp38-positive cells. Furthermore, transmission electron microscopy revealed the acquisition of mature hepatocyte features by HPCs cocultured with gp38-positive cells. This effect on maturation of HPCs was inhibited by the addition of conditioned medium derived from gp38-negative cells. By contrast, the upregulation of bromodeoxyuridine incorporation by HPCs demonstrated the proliferative effect of coculture with gp38-negative cells. In conclusion, these results suggest that in vitro maturation of HPCs promoted by gp38-positive cells may be opposed by an inhibitory effect of gp38-negative cells, which likely maintain the immature, proliferative state of HPCs.  相似文献   

2.
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Umbilical cord blood (UCB) is a source of hematopoietic stem cells and other stem cells, and human UCB cells have been reported to contain transplantable hepatic progenitor cells. However, the fractions of UCB cells in which hepatic progenitor cells are rich remain to be clarified. In the present study, first, the fractionated cells by CD34, CD38, and c-kit were transplanted via portal vein of NOD/SCID mice, and albumin mRNA expression was examined in livers at 1 and 3 months posttransplantation. At 1 and 3 months, albumin mRNA expression in CD34+UCB cells-transplanted livers was higher than that in CD34- cells-transplanted livers. Albumin mRNA expression in CD34+CD38+ cells-transplanted livers was higher than that in CD34+CD38- cells-transplanted [corrected] liver at 1 month. However, it was much higher [corrected] in CD34+CD38- cell-transplanted livers at 3 months. Similar expression of albumin mRNA was obtained between CD34+CD38+c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, and between CD34+CD38-c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, respectively. Second, fluorescence in situ hybridization and immunohistochemistry were performed to examine whether UCB cells really transdifferentiated into hepatocytes or they only fused with mouse hepatocytes. In mouse liver sections, of 1.2% cells which had human chromosomes, 0.9% cells were due to cell fusion, whereas 0.3% cells were transdifferentiated into human hepatocytes. These results suggest that CD34+UCB cells are rich fractions in hepatic progenitor cells, and that transdifferentiation from UCB cells into hepatocytes as well as cell fusion simultaneously occur in this situation.  相似文献   

4.
Immunocytochemical analysis revealed that different hepatic cell types exist during liver development: (i). cells co-expressing the stem-cell marker Thy1 and the hepatic lineage marker CK-18 and (ii). cells only expressing CK-18 (hepatoblasts). In this study we separated the different hepatic cells and analyzed gene-expression and phenotype. Fetal rat livers were digested by collagenase solution. OX43- and OX44-positive hematopoietic cells were depleted and Thy1-positive cells were enriched using Magnetic cell sorting. The different cell compartments were analyzed by RT-PCR and immunocytochemistry for Thy1, CK-18, AFP, and albumin. Hepatoblasts expressed albumin at all times and AFP in the early stages. Thy1-enriched cells expressed CK-18 at all times, albumin in the early, and AFP in the late stages. Thy1-positive cells from fetal livers express liver specific genes. The data suggest that Thy1-positive hepatic cells develop towards hepatic stem cells, and hepatoblasts develop towards mature hepatocytes of the adult liver.  相似文献   

5.
The fetal liver serves as the predominant hematopoietic organ until birth. However, the mechanisms underlying this link between hematopoiesis and hepatogenesis are unclear. Previously, we reported the isolation of a monoclonal antibody (anti-Liv8) that specifically recognizes an antigen (Liv8) present in murine fetal livers at embryonic day 11.5 (E11.5). Liv8 is a cell surface molecule expressed by hematopoietic cells in both fetal liver and adult mouse bone marrow. Here, we report that Liv8 is also transiently expressed by hepatoblasts at E11.5. Using protein purification and mass spectrometry, we have identified Liv8 as the CD44 protein. Interestingly, the expression of Liv8/CD44 in fetal liver was completely lost in AML1/ murine embryos, which lack definitive hematopoiesis. These results show that hepatoblasts change from Liv8/CD44-negative to Liv8/CD44-positive status in a hematopoiesis-dependent manner by E11.5, and indicate that Liv8/CD44 expression is an important link between hematopoiesis and hepatogenesis during fetal liver development.  相似文献   

6.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   

7.
Characterization of cells in the developing human liver   总被引:12,自引:0,他引:12  
Human hepatic progenitor cells (HPCs) have been shown to co-express the hematopoietic stem cell (HSC) markers, CD117 and CD34. These cells differentiate not only into hepatocytes and cholangiocytes but also into pancreatic ductal and acinar cells under certain conditions. The fetal liver (FL) is rich in precursor/stem cells; however, little is known about (i) the markers expressed by liver cells during fetal development and (ii) whether an equivalent to the adult liver stem-like progenitors exists in the FL. Here, (i) FL tissue obtained from human 5-18-week-old fetuses were evaluated by means of flow cytometry, immunocyto-, and histochemistry for the emergence of cells expressing and co-expressing known hematopoietic, hepatic, and pancreatic cell markers, and (ii) isolated putative HPCs were phenotypically and molecularly characterized. We report that (i) red blood and endothelial cell precursors were most abundant in early gestation. Cells expressing HSC and pancreatic markers were found in the first trimester, while cells expressing hepatic markers appeared in the second trimester. Very few committed cells were present in FLs obtained early in the first trimester. In addition, cells expressing pancreatic markers co-expressed the HSC marker CD117. (ii) Isolated CD117+/CD34+/CD90- cells in vitro expressed both the genes and proteins for the hepatic markers such as albumin, alpha feto protein (AFP), alpha1-antitrypsin, and cytokeratin 19 (CK19). Our study suggests that hepatoblast and ductal plate/bile duct development mainly occurs during the second trimester. FLs in gestation weeks 5-9 had the highest numbers of precursor cells and the least committed cells. Cells that differentiate into Alb+ or CK19+ can be isolated from early FLs and may be appropriate progenitors for establishing novel systems to investigate basic mechanisms for cell therapy.  相似文献   

8.
Biliary epithelia express high levels of CD44 in hepatobiliary diseases. The role of CD44-hyaluronic acid interaction in biliary pathology, however, is unclear. A rat model of hepatic cholestasis induced by bile duct ligation was employed for characterization of hepatic CD44 expression and extracellular hyaluronan distribution. Cell culture experiments were employed to determine whether hyaluronan can regulate cholangiocyte growth through interacting with adhesion molecule CD44. Biliary epithelial cells were found to express the highest level of CD44 mRNA among four major types of nonparenchymal liver cells, including Kupffer, hepatic stellate, and liver sinusoidal endothelial cells isolated from cholestatic livers. CD44-positive biliary epithelia lining the intrahepatic bile ducts were geographically associated with extracellular hyaluronan accumulated in the portal tracts of the livers, suggesting a role for CD44 and hyaluronan in the development of biliary proliferation. Cellular proliferation assays demonstrated that cholangiocyte propagation was accelerated by hyaluronan treatment and antagonized by small interfering RNA CD44 or anti-CD44 antibody. The study provides compelling evidence to suggest that proliferative biliary epithelia lining the intrahepatic bile ducts are a prime source of hepatic CD44. CD44-hyaluronan interaction, by enhancing biliary proliferation, may play a pathogenic role in the development of cholestatic liver diseases.  相似文献   

9.
We previously demonstrated that oncostatin M (OSM) promotes hepatic development in concert with glucocorticoid. The livers from mice deficient for gp130, a signaling subunit of the OSM receptor, displayed reduced expression of hepatic differentiation marker and defective glycogenic function. However, these phenotypes were not completely abolished in gp130(-/-) mice, suggesting that there is an alternative pathway regulating hepatic development in vivo. To test this possibility, we cultured gp130(-/-) fetal hepatic cells and investigated a signal that induces hepatic differentiation. When hepatocytes were forced to interact with each other by inoculating cells at high densities, hepatic differentiation was induced even in the absence of gp130. Moreover, cells stimulated with OSM and/or cultured at a high density possess many other metabolic functions. These observations suggest that fetal hepatic cells acquire multiple characteristics of differentiated hepatocytes in response to the signals generated by cell-cell contacts as well as by OSM.  相似文献   

10.
The proliferation of hepatic progenitor cells (HPCs) is observed in reactive conditions of the liver and primary liver cancers. Ring1 as a member of polycomb-group proteins which play vital roles in carcinogenesis and stem cell self-renewal was increased in HCC patients and promoted proliferation and survival of cancer cell by degrading p53. However, the mechanisms of Ring1 driving the progression of hepatocarcinogenesis have not been elucidated. In this study, forced expression Ring1 and Ring1 siRNA lentiviral vectors were utilized to stably overexpression and silence Ring1 in HPC cell line (WB-F344), respectively. Our finding indicated that overexpression of Ring1 in HPCs promoted colony formation, cell multiplication, and invasion in vitro, conversely depletion of Ring1 repressed the biological functions of HPCs relative to controls. The expression of β-catenin was upregulated in the HPCs with overexpression of Ring1, and the correlation analysis also showed that β-catenin and Ring1 had a significant correlation in the liver cancer tissues and adjacent tissues. The activation of the Wnt/β-catenin signaling pathway significantly increased the expression of liver cancer stem cells related (LCSCs)-related molecular markers CD90 and EpCAM, which led to the transformation of HPCs into LCSCs. Most importantly, the injection of HPCs with overexpressed Ring1 into the subcutaneous of nude mice leads to the formation of poorly differentiated HCC neoplasm. Our findings elucidate that overexpression of Ring1 the activated Wnt/β-catenin signaling pathway and drove the transformation of HPCs into cancer stem cell-like cells, suggesting Ring1 has extraordinary potential in early diagnosis of HCC.  相似文献   

11.
During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during chronic liver injury is promoted.  相似文献   

12.
丙型病毒性肝炎(hepatitis C virus,HCV)慢性感染及肝前体细胞向肝癌干细胞分化是原发性肝癌(hepatocellular carcinoma,HCC)的重要致病因素。且Wnt信号参与维持肝癌干细胞特性,但HCV能否通过活化Wnt信号诱导肝前体细胞向肝癌干细胞分化尚不清楚。本室研究发现,在HCV core诱导分化的肝前体细胞中,HCV core抑制成熟肝细胞标志物Alb、CK18的表达,糖原储存能力显著下降(P<0.05),且上调肝癌干细胞标志物EpCAM、CD133、CD44等表达。另外,HCV core增强β-联蛋白活性及表达水平,促使β-联蛋白向核内聚集,上调其下游靶基因EpCAM、细胞周期蛋白D1、C-myc的表达,沉默β-联蛋白后,Wnt/β-catenin通路其下游靶基因表达明显受到抑制,糖原储存能力部分恢复,荧光共聚焦显示HCV core与β-联蛋白在细胞核内存在共定位。因此,HCV core可能与β-联蛋白相互作用,直接活化Wnt/β-catenin通路,上调其下游靶基因EpCAM等表达,诱导肝前体细胞向肝癌干细胞分化。  相似文献   

13.
Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13highCD133+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.  相似文献   

14.
Apoptosis of T cells contributes to the immune homeostasis in inflamed organs. A prominent T-cell infiltration is usually seen in human chronic active hepatitis, being associated with liver fibrosis. In order to demonstrate T-cell apoptosis in the hepatic fibrotic tissue, we induced T-cell infiltration in the fibrotic liver of the rat by injecting concanavalin A (Con A), a T-cell mitogen. Lymphocytes increased in number with a peak at 1 day, preferentially distributing in the fibrotic tissue rather than the parenchyma. They consisted of CD4-positive and CD8-positive cells, and gave the feature of lymphoblasts. Double staining for CD3 and TUNEL demonstrated that T cells underwent apoptosis. Apoptotic cells were more frequent in the fibrotic livers than the normal livers, and were spatially associated with alpha-smooth muscle actin-positive myofibroblast-like cells that possibly derived from hepatic stellate cells (HSCs) and portal fibroblasts through activation. In vitro experiments demonstrated that lymphocyte apoptosis was more frequently induced in the co-culture of Con A-activated splenic T cells/activated HSCs compared to that induced in activated T cells/quiescent HSCs or resting T cells/activated HSCs. The present results indicate that T cells which have extravasated and infiltrated the hepatic fibrotic tissue undergo apoptosis probably through an interaction with myofibroblast-like cells, suggesting the regulatory role of the latter cells in T-cell accumulation in the fibrotic liver.  相似文献   

15.
Clinical and pharmaceutical applications of primary hepatocytes (PHs) are limited due to inadequate number of donated livers and potential challenges in successful maintenance of PHs in culture. Freshly isolated hepatocytes lose their specific features and rapidly de-differentiate in culture. Bipotent hepatoblasts, as liver precursor cells that can differentiate into both hepatocytes and cholangiocytes (Alb- and Ck19-positive cells, respectively), could be used as an alternative and reliable cell source to produce enough PHs for drug discovery or possible clinical applications. In this study, growth factor-free coculture systems of prenatal or postnatal murine liver stromal cells (pre-LSCs or post-LSCs, respectively) were used as feeder cells to support freshly isolated mice hepatoblasts. DLK1-positive hepatoblasts were isolated from mouse fetuses (E14.5) and cocultured with feeder cells under adherent conditions. The hepatoblasts' bipotent features, proliferation rate, and colony formation capacity were assessed on day 5 and 7 post-seeding. Immunofluorescence staining showed that the hepatoblasts remained double positive for Alb and Ck19 on both Pre- and Post-LSCs, after 5 and 7 days of coculture. Moreover, application of pre-LSCs as feeder cells significantly increased the number of DLK1-positive cells and their proliferation rate (ie, increased the number of Ki-67 positive cells) on day 7, compared to Post-LSCs group. Finally, to address our ultimate goal, which was an extension of hepatoblasts ex vivo maintenance, 3D spheres of isolated hepatoblasts were, cultured in conditioned medium (CM) derived from pre-LSCs until day 30. It was observed that the CM derived from Pre-LSCs could successfully prolong the maintenance of hepatic progenitor cells (HPCs) in 3D suspension culture.  相似文献   

16.
The extent to which extrahepatic cells participate in liver regeneration following transplantation is not known. Either full-size or reduced-size livers from wild-type mice were implanted into green fluorescent protein-positive (GFP(+)) transgenic recipient mice to determine whether regenerated liver contained host-derived GFP(+) hepatic cells. After reduced-size liver transplantation, GFP(+) cells were localized to the portal zone of the liver lobule. Interestingly, GFP(+) cells stained for CD117, a marker for progenitor cells, beginning 2 days after transplantation. A significant number of GFP(+) CD117(+) cells were identified in donor livers after 28 days. GFP(+) cells comprised nearly 9% of the donor liver 28 days after reduced-size liver transplant. Moreover, GFP(+) cells also expressed the hepatic progenitor cell marker A6 and novel marker hepatic-specific antigen (HSA), as well as stem cell antigen-1 (Sca-1). Interestingly, some GFP(-) cells also were stained for CD117 and A6, suggesting that both extrahepatic and intrahepatic stem cells were present and may have contributed to the regenerative response under these conditions. Reduced-size liver transplantation using GFP(+) transgenic mice supports the hypothesis that recipient-derived progenitor cells are present and may contribute to liver regeneration following transplantation.  相似文献   

17.
人胎肝干细胞的分离培养、鉴定及mRNA转录分析   总被引:1,自引:0,他引:1  
目的:探讨体外大量扩增培养人胎肝干细胞的方法,研究其形态、特性及mRNA转录情况。方法:采用两步灌流法结合链霉蛋白酶消化及Percoll密度梯度离心法分离12~20周胎龄的胎肝细胞,采用免疫细胞化学染色及RT-PCR方法对分离培养的细胞进行鉴定分析。结果:刚分离的细胞活力在80%以上,原代培养3d开始出现小细胞团,2周后即形成肉眼可见的细胞集落,细胞体积小,核质比大;原代、传代培养的胎肝细胞甲胎蛋白(AFP)、细胞角蛋白19(CK19)、卵圆标记蛋白OV-6、细胞分化抗原34免疫染色阳性;RT-PCR分析证明胎肝干细胞中AFP、白蛋白、CK19、CK18和八聚体结合蛋白(OCT)-4mRNA的表达。结论:分离了胎肝干细胞,具有肝细胞、胆管细胞及干细胞表面标志及相应的基因表达,为进一步的基础研究奠定了基础。  相似文献   

18.
In our previous study, preliminary data indicates that Poria cocos polysaccharides (PCP) shows beneficial hepatoprotection against acetaminophen (APAP)-induced liver injury in mice. However, biological molecular mechanism warrants to be further discussed. In current study, a number of biochemical tests and immunoassays were subjected to respective PCP-dosed mice in vivo and liver cells in vitro. As a result, PCP-treated mice showed reduced contents of inflammatory cytokines (tumor necrosis factor [TNF]-β and TNFsR-I), enzymological molecules (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase [LDL]), and heat shock protein 90 (Hsp90) after APAP exposure. Additionally, immunostaining assays exhibited that lowered-positive cells of cleaved-caspase-3, cleaved-poly ADP ribose polymerase, and Hsp90-labeled cells in PCP-treated livers were observed, and increased cluster of differentiation 29 (CD29), CD73-positive cells in the spleen were detected. Further, PCP-treated mouse liver cells resulted in increased cell growth, reduced LDL level. Increased proliferating cell nuclear antigen (PCNA), P38 mitogen-activated protein kinase (MAPK)-labeled cells and decreased Hsp90-positive cells in APAP-exposed liver cells were observed dose-dependently after PCP cotreatments. Collectively, our present experimental findings elucidate that PCP beneficially play hepatoprotective effects against APAP-lesioned liver cells in vivo and in vitro, potentially through the molecular mechanisms of suppressing cell death, reducing hepatocellular inflammatory stress and Hsp90 bioactivity.  相似文献   

19.

Background

While the role of canonical (β-catenin-mediated) Wnt signaling in hematolymphopoiesis has been studied extensively, little is known of the potential importance of non-canonical Wnt signals in hematopoietic cells. Wnt4 is one of the Wnt proteins that can elicit non-canonical pathways. We have previously shown that retroviral overexpression of Wnt4 by hematopoietic cells increased thymic cellularity as well as the frequency of early thymic progenitors and bone marrow hematopoietic progenitor cells (HPCs). However, the molecular pathways responsible for its effect in HPCs are not known.

Methodology/Principal Findings

Here we report that Wnt4 stimulation resulted in the activation of the small GTPase Rac1 as well as Jnk kinases in an HPC cell line. Jnk activity was necessary, while β-catenin was dispensable, for the Wnt4-mediated expansion of primary fetal liver HPCs in culture. Furthermore, Jnk2-deficient and Wnt4 hemizygous mice presented lower numbers of HPCs in their bone marrow, and Jnk2-deficient HPCs showed increased rates of apoptosis. Wnt4 also improved HPC activity in a competitive reconstitution model in a cell-autonomous, Jnk2-dependent manner. Lastly, we identified Fz6 as a receptor for Wnt4 in immature HPCs and showed that the absence of Wnt4 led to a decreased expression of four polarity complex genes.

Conclusions/Significance

Our results establish a functional role for non-canonical Wnt signaling in hematopoiesis through a pathway involving Wnt4, Fz6, Rac1 and Jnk kinases.  相似文献   

20.
To model the developmental pattern of human prothymocytes and thymopoiesis, we used NOD-scid/γc(-/-) mice grafted with human umbilical cord blood CD34(+) hematopoietic progenitor cells (HPCs). Human prothymocytes developed in the murine bone marrow (BM) from multipotent CD34(++)CD38(lo)lineage(-) HPCs to CD34(++)CD7(+)CD2(-) pro-T1 cells that progressed in a Notch-dependent manner to CD34(+)CD7(++)CD2(+) pro-T2 cells, which migrated to the thymus. BM prothymocyte numbers peaked 1 mo after graft, dropped at mo 2, and persisted at low levels thereafter, with only a few CD34(+)CD7(lo) prothymocytes with limited T potential being detected by mo 5. As a consequence, thymopoiesis in this xenogeneic setting began by weeks 4-6, peaked at mo 3, and decreased thenceforth. Analyzing mice grafted at 2, 4 or 8, mo of age showed that in an "older" BM, prothymocyte differentiation was perturbed and resulted in CD34(+)CD7(lo) prothymocytes with limited T potential. Whereas the early drop in BM thymopoietic activity was related to a Notch-independent loss of T potential by CD34(++)CD38(lo)lineage(-) HPCs, the later age-dependent production decline of prothymocytes was linked to a more complex mix of cell-intrinsic and microenvironmental defects. Accordingly, and contrasting with what was observed with umbilical cord blood HPCs, CD34(+) HPCs from human adult BM displayed only marginal thymopoietic activity when grafted into young 2-mo-old NOD-scid/γc(-/-) mice. These data demonstrate that the developmental pattern of BM prothymocytes during human late fetal and early postnatal life can be reproduced in humanized mice, and they suggest that onset of human thymus involution relates to decreased colonization by prothymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号