首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Savkovic SD  Koutsouris A  Wu G  Hecht G 《BioTechniques》2000,29(3):514-6, 518-20, 522
Pathogenic microbes influence gene regulation in eukaryotic hosts. Reporter gene studies can define the roles of promoter regulatory sequences. The effect of pathogenic bacteria on reporter genes has not been examined. The aim of this study was to identify which reporter genes are reliable in studies concerning host gene regulation by bacterial pathogens expressing type III secretory systems. Human intestinal epithelial cells, T84, Caco-2 and HT-29, were transfected with plasmids containing luciferase (luc), chloramphenicol acetyltransferase (CAT) or beta-galactosidase (beta-gal) as reporter genes driven by the inducible interleukin-8 (IL-8) or constitutively active simian virus 40 (SV40) promoter. Cells were infected with enteropathogenic E. coli or Salmonella typhimurium, and the reporter activity was assessed. Luc activity significantly decreased following infection, regardless of the promoter. The activity of recombinant luc was nearly ablated by incubation with either EPEC or Salmonella in a cell-free system. Activity was partially preserved by protease inhibitors, and immunoblot analysis showed a decreased amount and molecular weight of recombinant luc, suggesting protein degradation. Neither beta-gal nor CAT activity was altered by infection. Disruption of type III secretion prevented the loss of luc activity. We conclude that CAT or beta-gal, but not luc, can be used as reliable reporter genes to assess the impact of pathogenic microbes, especially those expressing type III secretion on host cell gene regulation.  相似文献   

4.
5.
SerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS). In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs) with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry). Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS.  相似文献   

6.
BACKGROUND: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.  相似文献   

7.
8.
9.
Detection of Mercury in Aquatic Environments Using EPRE Reporter Zebrafish   总被引:1,自引:0,他引:1  
It has been proposed that transgenic zebrafish could be designed to detect low levels of chemical contaminants that cause oxidative stress in aquatic environments, such as heavy metals or pesticides. In this paper, we describe such a transgenic zebrafish that produces a luciferase–green fluorescent protein (LUC–GFP) fusion protein under conditions of oxidative stress. The reporter gene expression is under the regulation of the electrophile responsive element (EPRE), which activates gene expression in response to oxidative stressors. The GFP component of this fusion protein allows us to visually detect reporter gene activity in live animals to determine if activity is localized to a particular tissue. The luciferase component is capable of returning a quantitative assessment of reporter gene activity that allows us to determine if reporter gene activity is directly correlated to the concentration of the chemical inducer. We have tested this reporter construct in both transient and stable transgenic fish after exposure to a range of HgCl2 concentrations. GFP expression from the EPRE–LUC–GFP construct was inducible in transient assays but was below the limit of detection in stable lines. In contrast, we observed inducible luciferase activity in both transient assays and stable lines treated with HgCl2. We conclude that the EPRE is capable of driving reporter gene expression in a whole animal assay under conditions of oxidative stress. Furthermore, expression was induced at HgCl2 concentrations that do not result in obvious morphological defects, making this approach useful for the detection of low levels of oxidative contaminants in aquatic environments.  相似文献   

10.
11.

Background

Covalent linkage of ubiquitin regulates the function and, ultimately, the degradation of many proteins by the ubiquitin-proteasome system (UPS). Given its essential role in protein regulation, even slight perturbations in UPS activity can substantially impair cellular function.

Methodology/Principal Findings

We have generated and characterized a novel transgenic mouse model which expresses a previously described reporter for UPS function. This UPS reporter contains a degron sequence attached to the C-terminus of green fluorescent protein, and is predominantly expressed in neurons throughout the brain of our transgenic model. We then demonstrated that this reporter system is sensitive to UPS inhibition in vivo.

Conclusions/Significance

Given the obstacles associated with evaluating proteasomal function in the brain, our mouse model uniquely provides the capability to monitor UPS function in real time in individual neurons of a complex organism. Our novel mouse model now provides a useful resource with which to evaluate the impact of aging, as well as various genetic and/or pharmacological modifiers of neurodegenerative disease(s).  相似文献   

12.
Centaurin β5, a protein with a yet unknown function, belongs to the centaurin family. It is encoded by CENTB5, whose expression pattern has been studied insufficiently. Intron 14–15 of human CENTB5 contains a lowly variable minisatellite repeat UPS29, while the mouse Centb5 contains an imperfect microsatellite repeat (CATG)19. The shorter UPS29 alleles have previously been associated with certain forms of Parkinson’s disease and epilepsy. Moreover, both human and murine CENTB5 are syntenic with SCNN1D and ACOT7, which are active primarily in the nervous system, and whose aberrations are associated with epilepsy and neurodegenerative processes. As intronic sequences can modulate the expression of not only those genes that harbor them, but also of neighboring and remote genes, the CENTB5, SCNN1D, and ACOT7 expression levels were all analyzed by RT-PCR. The potential of intronic tandem repeats UPS29 and (CATG)19 to regulate/modulate the expression of CENTB5, SCNN1D, and ACOT7 has been assessed in silico. CENTB5, SCNN1D, and ACOT7 expression was detected in all human and murine tissues studied, suggestive of their physiologic importance. The putative role of UPS29 in the regulation of CENTB5, SCNN1D, and ACOT7 activity in the nerve tissue is discussed.  相似文献   

13.
The ubiquitin proteasome system (UPS) is impaired in Huntington's disease, a devastating neurodegenerative disorder. Sulforaphane, a naturally occurring compound, has been shown to stimulate UPS activity in cell cultures. To test whether sulforaphane enhances UPS function in vivo, we treated UPS function reporter mice ubiquitously expressing the green fluorescence protein (GFP) fused to a constitutive degradation signal that promotes its rapid degradation in the conditions of a healthy UPS. The modified GFP is termed GFP UPS reporter (GFPu). We found that both GFPu and ubiquitinated protein levels were significantly reduced and the three peptidase activities of the proteasome were increased in the brain and peripheral tissues of the mice. Interestingly, sulforaphane treatment also enhanced autophagy activity in the brain and the liver. To further examine whether sulforaphane promotes mutant huntingtin (mHtt) degradation, we treated Huntington's disease cells with sulforaphane and found that sulforaphane not only enhanced mHtt degradation but also reduced mHtt cytotoxicity. Sulforaphane‐mediated mHtt degradation was mainly through the UPS pathway as the presence of a proteasome inhibitor abolished this effect. Taken together, these data indicate that sulforaphane activates protein degradation machineries in both the brain and peripheral tissues and may be a therapeutic reagent for Huntington's disease and other intractable disorders.

  相似文献   


14.
This study examines the regulation of tumor necrosis factor-alpha (TNF-alpha) promoter activity by prostaglandin F2alpha ( PGF2alpha ) in HEK cells stably expressing either the FPA or FPB prostanoid receptors. Cells were transiently transfected with a luciferase reporter plasmid under the control of a TNF-alpha promoter and luciferase activity was measured. In the absence of PGF2alpha basal TNF-alpha reporter gene activity is elevated in FPB cells as compared with FPA cells. This elevated basal activity is blocked by pretreatment with a Rho inhibitor, but not by pretreatment with an inhibitor of protein kinase C (PKC). TNF-alpha reporter activity in FPB cells is stimulated by PGF2alpha and this is decreased by pretreatment with a chelator of intracellular calcium or by a gap junction inhibitor. In FPB cells pretreatment with a Rho inhibitor combined with either a calcium chelator or a gap junction inhibitor decreases both basal and PGF2alpha stimulated TNF-alpha reporter activity. Interestingly post-treatment of FPB cells with an inhibitor of PKC decreased PGF2alpha stimulated TNF-alpha reporter gene activity even though pretreatment did not. It, therefore, appears that PGF2alpha stimulated TNF-alpha reporter activity in FPB cells is amplified by a Rho-dependent mechanism involving calcium, gap junctions, and PKC. These findings may help in understanding the function of the FPB isoform in the corpus luteum.  相似文献   

15.
Minisatellite loci show variability in copy number of repeat units probably due to their recombinogenic activity. In the presence of minisatellites with Chi-similar sites in plasmids the enhanced frequency of homologous recombination of defective plasmids copies of selectable gene was shown. In this work we have estimated recombinogenic activity of minisatellite DNAs without Chi-similar sites. The restoration frequency of a neo gene and the ratio of restored and not restored copies of this gene in genomic DNA of transformed clones was quantitatively estimated. We conclude that the presence of minisatellite insertion without Chi-similar sites stimulates events of gene conversion in adjacent DNA of plasmids. Plasmids with minisatellites act as acceptors of genetic information.  相似文献   

16.
17.
18.
19.
The cystic fibrosis transmembrane conductance regulator gene (CFTR) is regulated in a tissue-specific and developmental fashion. Although it has been known for some time that phorbol esters decrease CFTR expression in cell lines that have high CFTR mRNA levels, the cis-acting elements that control this down-regulation remain ill-defined. The role of cis-acting elements within the CFTR minimal promoter in modulating responses to phorbol 12-myristate 13-acetate (PMA) and forskolin was assessed using luciferase reporter gene (luc)-containing plasmids transfected into Calu-3 and HT-29 cells. PMA treatment had no effect on luciferase activity in Calu-3 cells transiently transfected with plasmids containing luc driven by up to 2.3 kb of CFTR 5'-flanking DNA. PMA increased luciferase activity in transfected HT-29 cells. A more extensive region of DNA was evaluated using a yeast artificial chromosome (YAC) containing luc driven by approximately 335 of CFTR 5'-flanking DNA (y5'luc) stably introduced into HT-29 cells. Clonal cell lines containing y5'luc were created and assessed for luciferase activity at baseline and in response to forskolin and PMA. There was a wide range of baseline luciferase activities among the clones (42-1038 units/microg protein) that was not entirely due to the number of luc copies present within the cells. Treatment with both PMA and forskolin led to increased luciferase activity in six randomly selected clonal cell lines. As expected, endogenous CFTR expression increased in response to forskolin and decreased in response to PMA. These studies demonstrate that luc-containing YAC vectors can be used to study CFTR expression in human cells. In addition, these data suggest that important regulatory elements responsible for decreased CFTR expression in response to PMA are not located upstream of CFTR in the approximately 335 kb 5'-flanking sequence included in this YAC construct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号