首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overexpression or/and activating mutation of FLT3 kinase play a major driving role in the pathogenesis of acute myeloid leukemia (AML). Hence, pharmacologic inhibitors of FLT3 are of therapeutic potential for AML treatment. In this study, BPR1J-340 was identified as a novel potent FLT3 inhibitor by biochemical kinase activity (IC50 approximately 25 nM) and cellular proliferation (GC50 approximately 5 nM) assays. BPR1J-340 inhibited the phosphorylation of FLT3 and STAT5 and triggered apoptosis in FLT3-ITD+ AML cells. The pharmacokinetic parameters of BPR1J-340 in rats were determined. BPR1J-340 also demonstrated pronounced tumor growth inhibition and regression in FLT3-ITD+ AML murine xenograft models. The combination treatment of the HDAC inhibitor vorinostat (SAHA) with BPR1J-340 synergistically induced apoptosis via Mcl-1 down-regulation in MOLM-13 AML cells, indicating that the combination of selective FLT3 kinase inhibitors and HDAC inhibitors could exhibit clinical benefit in AML therapy. Our results suggest that BPR1J-340 may be further developed in the preclinical and clinical studies as therapeutics in AML treatments.  相似文献   

2.
Histone deacetylase inhibitors (HDIs) have shown promise as candidate radiosensitizer for many types of cancers. However, the mechanisms of action are not well understood, and whether they could have clinical impact on radiotherapy for leukemia is unclear. In this study, we demonstrate that suberoylanilide hydroxamic acid (SAHA) can increase radiosensitivity of acute myeloid leukemia (AML) cells through posttranslational modification of Rad51 protein responses and selective inhibition of the homology-directed repair (HDR) pathway. Our data also showed that AML cells with mutant, constitutively active FMS-like tyrosine kinase-3 (FLT3) were more radiation sensitive, caused by compromised non-homologous end joining (NHEJ) repair. Furthermore, SAHA-induced radiosensitization were enhanced in AML cells with expression of these FLT3 mutants. The results of this study suggest that SAHA, a recently approved HDI in clinical trials, may act as a candidate component for novel conditioning regimens to improve efficacy for AML patients undergoing radiotherapy and chemotherapy.  相似文献   

3.
FLT3-ITD and FLT3-TKD mutations are frequently found in acute myeloid leukemia (AML). This makes tyrosine kinase FLT3 a highly attractive target for therapeutic drug development. However, effective drugs have not yet emerged. This study is intended to identify and to characterize new FLT3 inhibitors. By using the protein substrate GST-FLT3S to analyze kinase activity of recombinant proteins carrying the catalytic domain of wild type and mutant forms of FLT3, we screened a chemical library containing 80 known protein kinase inhibitors. We identified SU11652 as a potent FLT3 inhibitor and further employed FLT3-ITD-positive MV- 4–11 cells to study its effects on cell growth, apoptosis, cell cycles, and cell signaling. SU11652 strongly inhibited the activity of wild type, D835Y, and D835H mutant forms of FLT3 with IC50 values of 1.5, 16, and 32 nM, respectively. It effectively blocked the growth of FLT3-ITD -positive MV-4-11 cells at nanomolar concentrations but exhibited much less effects on several other cells which do not carry mutations of FLT3. SU11652 inhibited growth of MV-4-11 cells by inducing apoptosis, causing cell cycle arrest, and blocking activation of the ERK, Akt, and STAT signaling pathways. SU11652 is a potent FLT3 inhibitor which selectively targets FLT3-ITD-positive cells. It should serve as a good candidate for development of therapeutic drugs to treat AML.  相似文献   

4.
FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML). Internal tandem duplications (ITDs) in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.  相似文献   

5.
Recently, several targeted agents have been developed for specific subsets of patients with acute myeloid leukaemia (AML), including midostaurin, the first FDA-approved FLT3 inhibitor for newly diagnosed patients with FLT3 mutations. However, in the initial Phase I/II clinical trials, some patients without FLT3 mutations had transient responses to midostaurin, suggesting that this multi-targeted kinase inhibitor might benefit AML patients more broadly. Here, we demonstrate submicromolar efficacy of midostaurin in vitro and efficacy in vivo against wild-type (wt) FLT3-expressing AML cell lines and primary cells, and we compare its effectiveness with that of other FLT3 inhibitors currently in clinical trials. Midostaurin was found to synergize with standard chemotherapeutic drugs and some targeted agents against AML cells without mutations in FLT3. The mechanism may involve, in part, the unique kinase profile of midostaurin that includes proteins implicated in AML transformation, such as SYK or KIT, or inhibition of ERK pathway or proviability signalling. Our findings support further investigation of midostaurin as a chemosensitizing agent in AML patients without FLT3 mutations.  相似文献   

6.
Past studies have shown that histone deacetylase (HDAC) and mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors synergistically kill melanoma cells with activating mutations in BRAF. However, the mechanism(s) involved remains less understood. Here, we report that combinations of HDAC and BRAF inhibitors kill BRAFV600E melanoma cells by induction of necrosis. Cotreatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) or panobinostat (LBH589) and the BRAF inhibitor PLX4720 activated the caspase cascade, but caspases appeared dispensable for killing, in that inhibition of caspases did not invariably block induction of cell death. The majority of dying cells acquired propidium iodide positivity instantly when they became positive for Annexin V, suggesting induction of necrosis. This was supported by caspase-independent release of high-mobility group protein B1, and further consolidated by rupture of the plasma membrane and loss of nuclear and cytoplasmic contents, as manifested by transmission electron microscopic analysis. Of note, neither the necrosis inhibitor necrostatin-1 nor the small interference RNA (siRNA) knockdown of receptor-interacting protein kinase 3 (RIPK3) inhibited cell death, suggesting that RIPK1 and RIPK3 do not contribute to induction of necrosis by combinations of HDAC and BRAF inhibitors in BRAFV600E melanoma cells. Significantly, SAHA and the clinically available BRAF inhibitor vemurafenib cooperatively inhibited BRAFV600E melanoma xenograft growth in a mouse model even when caspase-3 was inhibited. Taken together, these results indicate that cotreatment with HDAC and BRAF inhibitors can bypass canonical cell death pathways to kill melanoma cells, which may be of therapeutic advantage in the treatment of melanoma.  相似文献   

7.

Objectives

Clinical responses achieved with FLT3 kinase inhibitors in acute myeloid leukemia (AML) are typically transient and partial. Thus, there is a need for identification of molecular mechanisms of clinical resistance to these drugs. In response, we characterized MOLM13 AML cell lines made resistant to two structurally-independent FLT3 inhibitors.

Methods

MOLM13 cells were made drug resistant via prolonged exposure to midostaurin and HG-7-85-01, respectively. Cell proliferation was determined by Trypan blue exclusion. Protein expression was assessed by immunoblotting, immunoprecipitation, and flow cytometry. Cycloheximide was used to determine protein half-life. RT-PCR was performed to determine FLT3 mRNA levels, and FISH analysis was performed to determine FLT3 gene expression.

Results and Conclusions

We found that MOLM13 cells readily developed cross-resistance when exposed to either midostaurin or HG-7-85-01. Resistance in both lines was associated with dramatically elevated levels of cell surface FLT3 and elevated levels of phosphor-MAPK, but not phospho-STAT5. The increase in FLT3-ITD expression was at least in part due to reduced turnover of the receptor, with prolonged half-life. Importantly, the drug-resistant phenotype could be rapidly reversed upon withdrawal of either inhibitor. Consistent with this phenotype, no significant evidence of FLT3 gene amplification, kinase domain mutations, or elevated levels of mRNA was observed, suggesting that protein turnover may be part of an auto-regulatory pathway initiated by FLT3 kinase activity. Interestingly, FLT3 inhibitor resistance also correlated with resistance to cytosine arabinoside. Over-expression of FLT3 protein in response to kinase inhibitors may be part of a novel mechanism that could contribute to clinical resistance.  相似文献   

8.

Background

Gain-of-function mutations of tyrosine kinase FLT3 are frequently found in acute myeloid leukemia (AML). This has made FLT3 an important marker for disease diagnosis and a highly attractive target for therapeutic drug development. This study is intended to generate a sensitive substrate for assays of the FLT3 enzymatic activity.

Methods

We expressed in Escherichia coli cells a glutathione S-transferase (GST) fusion protein designated GST-FLT3S, which contains a peptide sequence derived from an autophosphorylation site of FLT3. The protein was used to analyze tyrosine kinase activity of baculovirus-expressed FLT3 and crude cell extracts of bone marrow cells from AML patients. It was also employed to perform FLT3 kinase assays for FLT3 inhibitor screening.

Results

GST-FLT3S in solution or on beads was strongly phosphorylated by recombinant proteins carrying the catalytic domain of wild type FLT3 and FLT3D835 mutants, with the latter exhibiting much higher activity and efficiency. GST-FLT3S was also able to detect elevated tyrosine kinase activity in bone marrow cell extracts from AML patients. A small-scale inhibitor screening led to identification of several potent inhibitors of wild type and mutant forms of FLT3.

Conclusions

GST-FLT3S is a sensitive protein substrate for FLT3 assays. It may find applications in diagnosis of diseases related to abnormal FLT3 activity and in inhibitor screening for drug development.  相似文献   

9.
10.
11.
Forkhead box M1 (FoxM1) drives cell cycle progression and the prevention of growth arrest and is over-expressed in many human malignancies. However, the characteristics of FoxM1 in acute myeloid leukemia (AML) are not clearly understood. We investigated the expression level of FoxM1 and analyzed the correlation of FoxM1 expression with AML patient characteristics and prognoses. Changes in FoxM1 expression were detected after MV4–11 cells, which have an internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 gene (FLT3-ITD), and control THP1 cells (encoding wild-type FLT3) were treated with the FLT3 receptor tyrosine kinase inhibitor AC220 (quizartinib) or FLT3 ligand (FL). Finally, we determined the apoptosis rates after the addition of the FoxM1 inhibitor thiostrepton (TST) to AML cells with or without FLT3-ITD. The expression of FoxM1 in AML patients was correlated with the presence of FLT3-ITD, genetic groups, and possibly overall survival. Inhibition of FLT3-ITD by AC220 down-regulated FoxM1 expression in MV4–11 cells, and stimulation of FLT3 by FL up-regulated FoxM1 expression in MV4–11 and THP1 cells. TST induced the apoptosis of MV4–11 and THP1 cells in a dose-dependent manner. Thus, FoxM1 is a potential prognostic marker and a promising therapeutic target in AML.  相似文献   

12.
13.
HL Huang  HY Lee  AC Tsai  CY Peng  MJ Lai  JC Wang  SL Pan  CM Teng  JP Liou 《PloS one》2012,7(8):e43645
Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug.  相似文献   

14.
Fms-like tyrosine kinase 3 (FLT3) has been verified as a therapeutic target for acute myeloid leukaemia (AML). In this study, we report a series of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazol-5-yl benzamide and phenyl urea derivatives as potent FLT3 inhibitors based on the structural optimisation of previous FLT3 inhibitors. Derivatives were synthesised as benzamide 8a–k, 8n–z, and phenyl urea 8l–m, with various substituents. The most potent inhibitor, 8r, demonstrated strong inhibitory activity against FLT3 and FLT3 mutants with a nanomolar IC50 and high selectivity profiles over 42 protein kinases. In addition, these type II FLT3 inhibitors were more potent against FLT3 mutants correlated with drug resistance. Overall, we provide a theoretical basis for the structural optimisation of novel benzimidazole analogues to develop strong inhibitors against FLT3 mutants for AML therapeutics.  相似文献   

15.
16.
17.
Action of protein kinases and phosphatases contributes to myocardial hypertrophy. PRL-3, a protein tyrosine phosphatase, was identified in a cDNA library from an explanted human heart obtained from a patient with idiopathic cardiomyopathy. PRL-3 is expressed in heart and skeletal muscle, exhibiting approximately 76% identity to the ubiquitous tyrosine phosphatase PRL-1, which was reported to increase cell proliferation. PRL-3 was cloned into E. coli and purified using affinity chromatography. PRL-3 activity was determined using the substrate 6,8-difluoro-4-methylumbelliferyl phosphate, and was inhibited by vanadate and analogs. HEK293 cells expressing PRL-3 demonstrated increased growth rates versus nontransfected cells or cells transfected with the catalytically inactive C104S PRL-3 mutant. The tyrosine phosphatase inhibitor, potassium bisperoxo (bipyridine) oxovanadate V, normalizes the growth rate of PRL-3 expressing cells to that of parental HEK293 cells in a concentration-dependent manner. Using FLIPR analysis, parental HEK293 cells mobilize calcium when stimulated with angiotensin-II (AngII). However, calcium mobilization is inhibited in cells expressing wild-type PRL-3 when stimulated with AngII, while cells expressing the inactive mutant of PRL-3 mobilize calcium to the same extent as parental HEK293 cells. Western blots comparing PRL-3 transfected cells to parental HEK293 cells showed dephosphorylation of p130(cas) in response to AngII. These data suggest a role for PRL-3 in the modulation of intracellular calcium transients induced by AngII.  相似文献   

18.
19.
20.
Transforming growth factor-beta 2 (TGF-β2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-β2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-β2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-β2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-β2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm’s canal (MSC) cell monolayers was decreased by TGF-β2 treatment. SAHA inhibited the effects of TGF-β2 on the permeability of these cells. TGF-β2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-β2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-β2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-β signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-β. These results imply that SAHA prevents TGF-β2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-β signaling in TM and MSC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号