首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:277–288, 2015  相似文献   

2.
Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine‐PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine‐PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN–PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2‐kDa FN–PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN–PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.  相似文献   

3.
Chemical coupling of polyethylene glycol (PEG) to therapeutic proteins reduces their immunogenicity and prolongs their circulating half-life. The limitation of this approach is the number and distribution of sites on proteins available for PEGylation (the N terminus and the -amino group of lysines). To increase the extent of PEGylation, we have developed a method to increase the number of PEGylation sites in a model protein, recombinant methionine alpha,gamma-lyase (recombinant methioninase; rMETase), an enzyme cancer therapeutic cloned from Pseudomonas putida. rMETase was first PEGylated with methoxypolyethylene glycol succinimidyl glutarate-5000 with a molar ratio of PEG:rMETase of 15:1. The carboxyl groups of the initially PEGylated protein were then conjugated with diaminobutane, resulting in carboxyl amidation. This reaction was catalyzed by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, a water-soluble carbodiimide. The steric hindrance provided by the PEG chains already coupled to the protein prevented cross-linking between rMETase molecules during the carboxyl amidation reaction. The carboxyl-amidated PEGylated rMETase was hyper-PEGylated at a molar ratio of PEG to PEG-rMETase of 60:1. Biochemical analysis indicated that 13 PEG chains were coupled to each subunit of rMETase after hyper-PEGylation compared with 6-8 PEG chains attached to the non-carboxyl-amidated PEG-rMETase. Approximately 15-20% of the non-PEGylated rMETase activity was retained in the hyper-PEGylated molecule. Immunogenicity of the hyper-PEG-rMETase was significantly reduced relative to PEG-rMETase and rMETase. Initial results suggest that hyper-PEGylation may become a new strategy for PEGylation of protein biologics.  相似文献   

4.
The employment of enzymes as catalysts within organic media has traditionally been hampered by the reduced enzymatic activities when compared to catalysis in aqueous solution. Although several complementary hypotheses have provided mechanistic insights into the causes of diminished activity, further development of biocatalysts would greatly benefit from effective chemical strategies (e.g., PEGylation) to ameliorate this event. Herein we explore the effects of altering the solvent composition from aqueous buffer to 1,4-dioxane on structural, dynamical, and catalytic properties of the model enzyme subtilisin Carlsberg (SBc). Furthermore, we also investigate the effects of dissolving the enzyme in 1,4-dioxane through chemical modification with poly(ethylene)-glycol (PEG, M(W) = 20 kDa) on these enzyme properties. In 1,4-dioxane a 10(4)-fold decrease in the enzyme's catalytic activity was observed for the hydrolysis reaction of vinyl butyrate with D(2)O and a 50% decrease in enzyme structural dynamics as evidenced by reduced amide H/D exchange kinetics occurred. Attaching increasing amounts of PEG to the enzyme reversed some of the activity loss. Evaluation of the structural dynamic behavior of the PEGylated enzyme within the organic solvent revealed an increase in structural dynamics at increased PEGylation. Correlation analysis between the catalytic and structural dynamic parameters revealed that the enzyme's catalytic activity and enantioselectivity depended on the changes in protein structural dynamics within 1,4-dioxane. These results demonstrate the importance of protein structural dynamics towards regulating the catalytic behavior of enzymes within organic media.  相似文献   

5.
As a potential hemoglobin (Hb)-based oxygen carrier (HBOC), the PEGylated Hb has received much attention for its non-nephrotoxicity. However, PEGylation can adversely alter the structural and functional properties of Hb. The site of PEGylation is an important factor to determine the structure and function of the PEGylated Hb. Thus, protection of some sensitive residues of Hb from PEGylation is of great significance to develop the PEGylated Hb as HBOC. Here, Cys-93(β) of Hb was conjugated with 20 kDa polyethylene glycol (PEG20K) through hydrazone and disulfide bonds. Then, the conjugate was modified with PEG5K succinimidyl carbonate (PEG5K-SC) using acylation chemistry, followed by removal of PEG20K Hb with hydrazone hydrolysis and disulfide reduction. Reversible conjugation of PEG20K at Cys-93(β) can protect Lys-95(β), Val-1(α) and Lys-16(α) of Hb from PEGylation with PEG5K-SC. The autoxidation rate, oxygen affinity, structural perturbation and tetramer instability of the PEGylated Hb were significantly decreased upon protection with PEG20K. The present study is expected to improve the efficacy of the PEGylated Hb as an oxygen therapeutic.  相似文献   

6.
Neuromedin U (NMU) is a neuropeptide found in the brain and gastrointestinal tract. The NMU system has been shown to regulate energy homeostasis by both a central and a peripheral mechanism. Peripheral administration of human NMU-25 was recently shown to inhibit food intake in mice. We examined the possibility that other NMU-related peptides exert an anorectic activity by intraperitoneal (i.p.) administration. We found that rat NMU-23 and its structurally-related peptide rat neuromedin S (NMS) significantly reduced food intake in lean mice, whereas NMU-8, an active fragment of the octapeptide sequence conserved in porcine, human and mouse NMU, had no effect. When rat NMU-23, NMU-8, and rat NMS were covalently conjugated to polyethylene glycol (PEG) (PEGylation) at the N-terminus of these peptides, PEGylated NMU-8 showed the most long-lasting and robust anorectic activity. The exploration of the linker between NMU-8 and PEG using hetero-bifunctional chemical cross-linkers led to an identification of PEGylated NMU-8 analogs with higher affinity for NMU receptors and with more potent anorectic activity in lean mice. The PEGylated NMU-8 showed potent and robust anorectic activity and anti-obesity effect in diet-induced obesity (DIO) mice by once-daily subcutaneous (s.c.) administration. These results suggest that PEGylated NMU-8 has the therapeutic potential for treatment of obesity.  相似文献   

7.
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.  相似文献   

8.
Ricin A-chain, which exhibits excellent cytotoxicity to tumor cells, has been widely used as an immunotoxin source. However, it has the fatal shortcoming of poor pharmacokinetics due to the tremendous liver uptake via carbohydrate-mediated recognition. Modification of proteins with polyethylene glycol, PEGylation, has the advantages of shielding the specific sites and prolonging the biological half-life. In this study, the carbohydrate-specific PEGylation of ricin A-chain was considered to be a novel approach to overcome this limitation. The carbohydrate group of ricin A-chain was oxidized by sodium m-periodate and further specifically conjugated with hydrazide-derivatized PEG. For a comparative study, the PEGylated ricin A-chain at amino groups was prepared using the hydroxysuccinimide ester-derivatized PEG. The carbohydrate-specifically PEGylated ricin A-chain showed a markedly lower liver uptake and systemic clearance compared with the amine-directly PEGylated ricin A-chain as well as the unmodified ricin A-chain. Furthermore, carbohydrate-specifically PEGylated ricin A-chain showed a significantly higher in vitro ribosome-inactivating activity than the amine-directly PEGylated ricin A-chain. These findings clearly demonstrate that the carbohydrate-specificity as well as PEGylation plays an important role in improving the in vivo pharmacokinetic properties and in vitro bioactivity. Therefore, these results suggest that the therapeutic use of immunotoxins constructed using this carbohydrate-specifically PEGylated ricin A-chain has potential as a cancer therapy.  相似文献   

9.
Chemical coupling of polyethylene glycol (PEG) to proteins or particles (PEGylation), prolongs their circulation half-life by greater than 50-fold, reduces their immunogenicity, and also promotes their accumulation in tumors due to enhanced permeability and retention effect. Herein, phase separation method was used to prepare bovine serum albumin (BSA) nanoparticles. PEGylation of BSA nanoparticles was performed by SPA activated mPEG through their free amino groups. Effect of process variables on PEGylation efficiency of BSA nanoparticles was investigated and optimized through response surface methodology with the amount of free amino groups as response. Optimum conditions was found to be 32.5 g/l of PEG concentration, PEG-nanoparticle incubation time of 10 min, incubation temperature of 27°C, and pH of 7 for 5 mg of BSA nanoparticles in 1 mL phosphate buffer. Analysis of data showed that PEG concentration had the most noticeable effect on the amount of PEGylated amino groups, but pH had the least. Mean diameter and zeta potential of PEGylated nanoparticles under these conditions were 217 nm and −14 mV, respectively. In conclusion, PEGylated nanoparticles demonstrated reduction of the negative surface charge compared to the non modified particles with the zeta potential of −31.7 mV. Drug release from PEGylated nanoparticles was almost slower than non-PEGylated ones, probably due to existence of a PEG layer around PEGylated particles which makes an extra resistance in opposition to drug diffusion.  相似文献   

10.
Three cysteine analogues of bone morphogenetic protein (BMP)-2, BMP2A2C, BMP2N56C, and BMP2E96C, were generated in order to enable the attachment of SH-reactive poly(ethylene glycol) (PEG) at specific sites. Three different approaches (Ap) were used for SH-specific PEGylation: (Ap1) reaction of glutathione activated proteins with thiol PEG; (Ap2) reaction of DTT reduced proteins with orthopyridyl disulfide PEG; (Ap3) reaction of DTT reduced proteins with maleimide PEG. Non-, mono-, and di-PEGylated BMP-2 analogues could be separated by RP-HPLC. Trypsin digestion of PEGylated proteins and Trypsin and GluC double-digestion of N-ethylmaleimide-labeled proteins confirmed that the modifications were site-specific. Surface plasmon resonance analysis of type I and type II receptor binding of the PEGylated BMP-2 analogues revealed that all three PEGylation approaches were equivalent. PEGylation at positions 2 and 96 caused a similar decrease in receptor affinity. PEGylation at position 56 resulted in a larger decrease in affinity for both types of receptors. Mono-PEGylated BMP-2 analogues exhibited intermediate affinities in comparison with unmodified and di-PEGylated proteins. However, the biological activity of the PEGylated BMP-2 analogues as measured in alkaline phosphatase assay was higher than BMP-2 wild-type for the PEGylated BMP2A2C, slightly reduced for the BMP2N56C, and strongly reduced for the BMP2E96C. These results taken together indicate that specific attachment of PEG at engineered sites of BMP-2 is possible and that the attachment site is critical for biological activity. Furthermore, the biological activity of PEGylated BMP-2 analogues in cell culture seems to be determined not only by receptor affinity, but also by other factors such as protein solubility and stability. It is also discussed that the attached PEG interferes with the binding of BMP-2 to modulator proteins, co-receptors, or heparinic sites of proteoglycans in the extracellular matrix.  相似文献   

11.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   

12.
聚乙二醇(PEG)定点修饰蛋白药物是针对蛋白特定基团特定位点的修饰,相比于非定点随机修饰的特点是PEG修饰位点的单一与确定,避免了修饰异构体的干扰,能较好的保留药物体内外活性;修饰产物组成均一、性质稳定,便于质量控制,降低由修饰异构体引起的潜在的安全性风险,并很大程度上提高得率,降低成本。已有PEG定点修饰蛋白药物上市,还有部分处于临床试验阶段。本文综述了PEG定点修饰蛋白药物的技术研究与临床进展,包括PEG定点修饰剂、定点修饰方法、PEG定点修饰的上市和临床药物及面临的问题,并展望了PEG修饰技术未来的发展前景。  相似文献   

13.
Yun Q  Yang RE  Chen T  Bi J  Ma G  Su Z 《Journal of biotechnology》2005,118(1):67-74
A novel preparation for polyethylene glycol (PEG) derivatives and chromatographic separation procedure of the PEGylated recombinant human granulocyte colony-stimulating factor (rhG-CSF) were designed to evaluate the reproducibility and scalability at large laboratory-scale level. The new "PEG-pellet" PEGylation mode was successfully applied to control the pH fluctuation during the conjugation reaction, a general problem in traditional liquid-phase conjugation mode. Moreover, two consecutive ion-exchange chromatography steps were successfully used to separate and purify the PEGylated rhG-CSF. Cation-exchange chromatography was firstly applied to separate PEGylated rhG-CSF from intact rhG-CSF, followed by anion-exchange chromatography to obtain individual PEG-rhG-CSF species (mono-, di- and tri-PEGylated rhG-CSF) and remove the excess free PEG. Furthermore, the molecular weight of individual PEGylated rhG-CSF was identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and SDS-PAGE, and cell proliferation activity in vitro was detected by MTT assay using NFS-60 cell.  相似文献   

14.
PEGylation of antibodies is known to increase their half-life in systemic circulation, but nothing is known regarding whether PEGylation can improve the inhibitory potency of antibodies against target receptors. In this paper, we have examined this question using antibodies directed to Sialoadhesin (Sn), a macrophage-restricted adhesion molecule that mediates sialic acid dependent binding to different cells. Anti-Sn monoclonal antibodies (mAbs), SER-4 and 3D6, were conjugated to PEG 5 kDa or and PEG 20 kDa, resulting in the incorporation of up to 3 molecules of PEG per mAb molecule. Following purification of PEGylated mAbs by anion exchange chromatography, it was shown that PEGylation had little or no effect on antigen binding activity but led to a dramatic increase in inhibitory potency that was proportional to both the size of the PEG and the degree of derivatization. Thus, PEGylation of antibodies directed to cell surface receptors could be a powerful approach to improve the therapeutic efficacy of antibodies, not only by increasing their half-life in vivo, but also by increasing their inhibitory potency for blocking receptor-ligand interactions.  相似文献   

15.
New radiopharmaceuticals are possible using site-specific conjugation of small tumor binding proteins and poly(ethylene glycol) (PEG) scaffolds to provide modular multivalent, homo- or heterofunctional cancer-targeting molecules having preferred molecular size, valence, and functionality. Residence time in plasma can be optimized by modification of the size, number, and charge of the protein units. However, random PEG conjugation (PEGylation) of these small molecules via amine groups has led to variations of structural conformation and binding affinity. To optimize PEGylation, scFvs have been recombinantly produced in a vector that adds an unpaired cysteine (c) near the scFv carboxy terminus (scFv-c), thus providing a specific site for thiol conjugation. To evaluate the general applicability of this unpaired cysteine for PEGylation of scFv-c, conjugation efficiency was determined for four different scFvs and several PEG molecules having thiol reactive groups. The effect of the PEG molecular format on scFv-c PEG malignant cell binding was also addressed. ScFvs produced as scFv-c and purified by anti E-TAG affinity chromatography were conjugated using PEG molecules with maleimide (Mal) or o-pyridyl disulfide (OPSS). Conjugations were performed at pH 7.0, with 2 molar excess TCEP/scFv and PEG-(Mal) or PEG-OPSS, using 5:1 (PEG/scFv). PEG-Mal conjugation efficiency was also evaluated with 1:5 (PEG/scFv). PEGylation efficiency was determined for each reaction by quantitation of the products on SDS-PAGE. ScFv-c conjugation with unifunctional maleimide PEGs resulted in PEG conjugates incorporating 30-80% of the scFv-c, but usually above 50%. Efficiency of scFv-c conjugation to both functional groups of the bifunctional PEG-(Mal)2 varied between the PEG and scFv-c molecules studied. A maximum of 45% of scFv-c protein was conjugated as PEG- (scFv-c)2 using the smallest PEG-(Mal)2 (2 kDa). No significant increase in scFv-c conjugation was observed by the use of greater than a 5 molar excess of PEG/scFv-c. Under the same conjugation conditions, PEG as OPSS yielded less than 10% PEG-scFv-c. PEG-(scFv)2 conjugates had increased binding in ELISA using malignant cell membranes, when compared with unmodified scFv-c. PEGylated-scFv binding was comparable with unmodified scFv-c. In summary, scFv-c can be PEGylated in a site-specific manner using uni- or bivalent PEG-Mal, either linear or branched. ScFv-c was most efficiently conjugated to smaller PEG-Mal molecules, with the smallest, 2 kDa PEG-Mal, usually PEGylating 60-90% of the scFv-c. ScFv-c conjugation to form PEG-(scFv-c)2 reached greatest efficiency at 45%, and its purified form demonstrated greater binding than the corresponding scFv-c.  相似文献   

16.
'Solid-phase' PEGylation, in which a conjugation reaction attaches proteins to a solid matrix, has distinct advantages over the conventional, solution-phase process. We report a case study in which recombinant interferon (rhIFN) alpha-2a was adsorbed to a cation-exchange resin and PEGylated at the N-terminus by 5, 10, and 20 kDa mPEG aldehydes through reductive alkylation. After PEGylation, a salt gradient elution efficiently purified the mono-PEGylate of unwanted species such as unmodified IFN and unreacted PEG. Mono-PEGylation and purification were integrated into a single, chromatographic step. Depending on the molecular weight of the mPEG aldehyde, the mono-PEGylation yield ranged from 50 to 65%. Major problems associated with the solution-phase process such as random or uncontrollable multi-PEGylation and post-PEGylation purification difficulties were overcome. N-terminus sequencing and MALDI-TOF mass spectrophometry confirmed that the PEG molecule was conjugated only to the N-terminus. A cell proliferation study indicated reduced antiviral activity of the mono-PEGylate compared to that of the unmodified IFN. As higher molecular weight PEG was conjugated, in vitro bioactivity and antibody binding activity, as measured by a surface plasmon resonance biosensor, decreased. Nevertheless, trypsin resistance and thermal stability were considerably improved .  相似文献   

17.
Hu T  Li D  Manjula BN  Acharya SA 《Biochemistry》2008,47(41):10981-10990
The PEGylated hemoglobin (Hb) has been evaluated as a potential blood substitute. In an attempt to understand the autoxidation of the PEGylated Hb, we have studied the autoxidation of the PEGylated Hb site-specifically modified at Cys-93(beta) or at Val-1(beta). PEGylation of Hb at Cys-93(beta) perturbed the heme environment and increased the autoxidation rate of Hb, which is at a higher level than that caused by PEGylation at Val-1(beta). The perturbation of the heme environment of Hb is attributed to the maleimide modification at Cys-93(beta) and not due to conjugation of the PEG chains. However, the PEG chains enhance the autoxidation and the H 2O 2 mediated oxidation of Hb. Accordingly, the PEG chains are assumed to increase the water molecules in the hydration layer of Hb and enhance the autoxidation by promoting the nucleophilic attack of heme. The autoxidation rate of the PEGylated Hb does not show an inverse correlation with the oxygen affinity. The H 2O 2 mediated structural loss and the heme loss of Hb are increased by maleimide modification at Cys-93(beta) and further decreased by conjugation of the PEG chains. The autoxidation of the PEGylated Hbs is attenuated significantly in the plasma, possibly due to the presence of the antioxidant species in the plasma. This result is consistent with the recent suggestion that there is no direct correlation between the in vitro and in vivo autoxidation of the PEGylated Hb. Therefore, the pattern of PEGylation can be manipulated for the design of the PEGylated Hb with minimal autoxidation.  相似文献   

18.
High hydrodynamic volume, high viscosity and high colloidal osmotic pressure (COP) of PEGylated hemoglobin (Hb) have been suggested to neutralize the vasoactivity of acellular Hb. Consequences of non-conservative PEGylation (positive charge of the amino groups at the PEGylation sites is neutralized) using succinimidyl-ester of propionic acid PEG5K on the properties of PEGylated Hb have now been investigated. Non-conservative PEGylation of Hb leads to a much higher increase in the COP and viscosity of Hb than conservative extension arm facilitated (EAF) PEGylation of Hb. Introduction of alphaalpha-fumaryl crosslinking decreased the COP of non-conservative PEGylated Hb by stabilization of interdimeric interactions. Compared to the EAF-PEGylated alphaalpha-fumaryl Hb, non-conservative PEGylated product shows a comparable COP and higher viscosity. Conservative PEGylation of alphaalpha-fumaryl Hb by reductive alkylation chemistry does not increase the COP to this level, but enhanced the molecular volume and viscosity comparable to EAF-PEGylated product. Thus, the molecular properties of PEGylated Hb can be fine tuned using different PEGylation platforms and provide a unique opportunity for the design of second generation PEGylated Hbs.  相似文献   

19.
Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.  相似文献   

20.
A critical challenge of PEGylation is the production of the desired PEGylated protein form at a high yield. In this study, a kinetic model was constructed successfully to describe the PEGylation reaction of recombinant hirudin variant-2 (HV2) with monomethoxy-PEG-succinimidyl carbonate (mPEG-SC) by fitting the experimental data. Moreover, PEGylation reaction conditions were investigated using the established model and the corresponding experiments to determine the optimal condition to achieve the mono-PEG-HV2 at the desired yield. The model predictions agreed well with the experimental data. Several important process parameters (maximum theoretical yield of mono-PEG-HV2 (ymax), critical PEG/HV2 molar ratio (mcrit) and reaction time to achieve ymax (tmax)) and their mathematical equations were obtained to determine the optimum reaction conditions. Among reaction conditions affecting the PEGylation rates, pH and temperature displayed little effect on ymax, but ymax increased as PEG size increased. Optimal reaction condition to produce mono-PEG-HV2 was as follows: pH and temperature could vary in a certain range; whereas PEG/HV2 molar ratio should be slightly greater than mcrit and the reaction should be stopped at tmax. The results of this study indicate that the proposed reaction kinetic model can provide a possible mechanism interpretation for real PEGylation reactions and optimize efficiently the PEGylation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号