首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-protein interactions play an essential role in the functioning of cell. The importance of charged residues and their diverse role in protein-protein interactions have been well studied using experimental and computational methods. Often, charged residues located in protein interaction interfaces are conserved across the families of homologous proteins and protein complexes. However, on a large scale, it has been recently shown that charged residues are significantly less conserved than other residue types in protein interaction interfaces. The goal of this work is to understand the role of charged residues in the protein interaction interfaces through their conservation patterns. Here, we propose a simple approach where the structural conservation of the charged residue pairs is analyzed among the pairs of homologous binary complexes. Specifically, we determine a large set of homologous interactions using an interaction interface similarity measure and catalog the basic types of conservation patterns among the charged residue pairs. We find an unexpected conservation pattern, which we call the correlated reappearance, occurring among the pairs of homologous interfaces more frequently than the fully conserved pairs of charged residues. Furthermore, the analysis of the conservation patterns across different superkingdoms as well as structural classes of proteins has revealed that the correlated reappearance of charged residues is by far the most prevalent conservation pattern, often occurring more frequently than the unconserved charged residues. We discuss a possible role that the new conservation pattern may play in the long-range electrostatic steering effect.  相似文献   

2.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

3.
4.
Rahat O  Yitzhaky A  Schreiber G 《Proteins》2008,71(2):621-630
Protein-protein interactions networks has come to be a buzzword associated with nets containing edges that represent a pair of interacting proteins (e.g. hormone-receptor, enzyme-inhibitor, antigen-antibody, and a subset of multichain biological machines). Yet, each such interaction composes its own unique network, in which vertices represent amino acid residues, and edges represent atomic contacts. Recent studies have shown that analyses of the data encapsulated in these detailed networks may impact predictions of structure-function correlation. Here, we study homologous families of protein-protein interfaces, which share the same fold but vary in sequence. In this context, we address what properties of the network are shared among relatives with different sequences (and hence different atomic interactions) and which are not. Herein, we develop the general mathematical framework needed to compare the modularity of homologous networks. We then apply this analysis to the structural data of a few interface families, including hemoglobin alpha-beta, growth hormone-receptor, and Serine protease-inhibitor. Our results suggest that interface modularity is an evolutionarily conserved property. Hence, protein-protein interfaces can be clustered down to a few modules, with the boundaries being evolutionarily conserved along homologous complexes. This suggests that protein engineering of protein-protein binding sites may be simplified by varying each module, but retaining the overall modularity of the interface.  相似文献   

5.
Understanding the mechanisms of protein–protein interaction is a fundamental problem with many practical applications. The fact that different proteins can bind similar partners suggests that convergently evolved binding interfaces are reused in different complexes. A set of protein complexes composed of non-homologous domains interacting with homologous partners at equivalent binding sites was collected in 2006, offering an opportunity to investigate this point. We considered 433 pairs of protein–protein complexes from the ABAC database (AB and AC binary protein complexes sharing a homologous partner A) and analyzed the extent of physico-chemical similarity at the atomic and residue level at the protein–protein interface. Homologous partners of the complexes were superimposed using Multiprot, and similar atoms at the interface were quantified using a five class grouping scheme and a distance cut-off. We found that the number of interfacial atoms with similar properties is systematically lower in the non-homologous proteins than in the homologous ones. We assessed the significance of the similarity by bootstrapping the atomic properties at the interfaces. We found that the similarity of binding sites is very significant between homologous proteins, as expected, but generally insignificant between the non-homologous proteins that bind to homologous partners. Furthermore, evolutionarily conserved residues are not colocalized within the binding sites of non-homologous proteins. We could only identify a limited number of cases of structural mimicry at the interface, suggesting that this property is less generic than previously thought. Our results support the hypothesis that different proteins can interact with similar partners using alternate strategies, but do not support convergent evolution.  相似文献   

6.
The general similarity in the forces governing protein folding and protein-protein associations has led us to examine the similarity in the architectural motifs between the interfaces and the monomers. We have carried out extensive, all-against-all structural comparisons between the single-chain protein structural dataset and the interface dataset, derived both from all protein-protein complexes in the structural database and from interfaces generated via an automated crystal symmetry operation. We show that despite the absence of chain connections, the global features of the architectural motifs, present in monomers, recur in the interfaces, a reflection of the limited set of the folding patterns. However, although similarity has been observed, the details of the architectural motifs vary. In particular, the extent of the similarity correlates with the consideration of how the interface has been formed. Interfaces derived from two-state model complexes, where the chains fold cooperatively, display a considerable similarity to architectures in protein cores, as judged by the quality of their geometric superposition. On the other hand, the three-state model interfaces, representing binding of already folded molecules, manifest a larger variability and resemble the monomer architecture only in general outline. The origin of the difference between the monomers and the three-state model interfaces can be understood in terms of the different nature of the folding and the binding that are involved. Whereas in the former all degrees of freedom are available to the backbone to maximize favorable interactions, in rigid body, three-state model binding, only six degrees of freedom are allowed. Hence, residue or atom pair-wise potentials derived from protein-protein associations are expected to be less accurate, substantially increasing the number of computationally acceptable alternate binding modes (Finkelstein et al., 1995).  相似文献   

7.
Herein, we study the interfaces of a set of 146 transient protein-protein interfaces in order to better understand the principles of their interactions. We define and generate the protein interface using tools from computational geometry and topology and then apply statistical analysis to its residue composition. In addition to counting individual occurrences, we evaluate pairing preferences, both across and as neighbors on one side of an interface. Likelihood correction emphasizes novel and unexpected pairs, such as the His-Cys pair found in most complexes of serine proteases with their diverse inhibitors and the Met-Met neighbor pair found in unrelated protein interfaces. We also present a visualization of the protein interface that allows for facile identification of residue-residue contacts and other biochemical properties.  相似文献   

8.
Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP) complexes and protein-ligand (PL) complexes with known three-dimensional structures for which (1) one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2) the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10 000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.  相似文献   

9.

Background

The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces.

Methodology/Principal Findings

Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions.

Conclusions/Significance

The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.  相似文献   

10.
MOTIVATION: Large-scale experiments reveal pairs of interacting proteins but leave the residues involved in the interactions unknown. These interface residues are essential for understanding the mechanism of interaction and are often desired drug targets. Reliable identification of residues that reside in protein-protein interface typically requires analysis of protein structure. Therefore, for the vast majority of proteins, for which there is no high-resolution structure, there is no effective way of identifying interface residues. RESULTS: Here we present a machine learning-based method that identifies interacting residues from sequence alone. Although the method is developed using transient protein-protein interfaces from complexes of experimentally known 3D structures, it never explicitly uses 3D information. Instead, we combine predicted structural features with evolutionary information. The strongest predictions of the method reached over 90% accuracy in a cross-validation experiment. Our results suggest that despite the significant diversity in the nature of protein-protein interactions, they all share common basic principles and that these principles are identifiable from sequence alone.  相似文献   

11.
The intricate molecular details of protein-protein interactions (PPIs) are crucial for function. Therefore, measuring the same interacting protein pair again, we expect the same result. This work measured the similarity in the molecular details of interaction for the same and for homologous protein pairs between different experiments. All scores analyzed suggested that different experiments often find exceptions in the interfaces of similar PPIs: up to 22% of all comparisons revealed some differences even for sequence-identical pairs of proteins. The corresponding number for pairs of close homologs reached 68%. Conversely, the interfaces differed entirely for 12-29% of all comparisons. All these estimates were calculated after redundancy reduction. The magnitude of interface differences ranged from subtle to the extreme, as illustrated by a few examples. An extreme case was a change of the interacting domains between two observations of the same biological interaction. One reason for different interfaces was the number of copies of an interaction in the same complex: the probability of observing alternative binding modes increases with the number of copies. Even after removing the special cases with alternative hetero-interfaces to the same homomer, a substantial variability remained. Our results strongly support the surprising notion that there are many alternative solutions to make the intricate molecular details of PPIs crucial for function.  相似文献   

12.
The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.  相似文献   

13.
A hydrophobic folding unit cutting algorithm, originally developed for dissecting single-chain proteins, has been applied to a dataset of dissimilar two-chain protein-protein interfaces. Rather than consider each individual chain separately, the two-chain complex has been treated as a single chain. The two-chain parsing results presented in this work show hydrophobicity to be a critical attribute of two-state versus three-state protein-protein complexes. The hydrophobic folding units at the interfaces of two-state complexes suggest that the cooperative nature of the two-chain protein folding is the outcome of the hydrophobic effect, similar to its being the driving force in a single-chain folding. In analogy to the protein-folding process, the two-chain, two-state model complex may correspond to the formation of compact, hydrophobic nuclei. On the other hand, the three-state model complex involves binding of already folded monomers, similar to the association of the hydrophobic folding units within a single chain. The similarity between folding entities in protein cores and in two-state protein-protein interfaces, despite the absence of some chain connectivities in the latter, indicates that chain linkage does not necessarily affect the native conformation. This further substantiates the notion that tertiary, non-local interactions play a critical role in protein folding. These compact, hydrophobic, two-chain folding units, derived from structurally dissimilar protein-protein interfaces, provide a rich set of data useful in investigations of the role played by chain connectivity and by tertiary interactions in studies of binding and of folding. Since they are composed of non-contiguous pieces of protein backbones, they may also aid in defining folding nuclei.  相似文献   

14.
Tuncbag N  Keskin O  Nussinov R  Gursoy A 《Proteins》2012,80(4):1239-1249
The similarity between folding and binding led us to posit the concept that the number of protein-protein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known protein-protein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to "classical" docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of protein-protein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.  相似文献   

15.
16.
We present an analysis of the water molecules immobilized at the protein-protein interfaces of 115 homodimeric proteins and 46 protein-protein complexes, and compare them with 173 large crystal packing interfaces representing nonspecific interactions. With an average of 15 waters per 1000 A2 of interface area, the crystal packing interfaces are more hydrated than the specific interfaces of homodimers and complexes, which have 10-11 waters per 1000 A2, reflecting the more hydrophilic composition of crystal packing interfaces. Very different patterns of hydration are observed: Water molecules may form a ring around interfaces that remain "dry," or they may permeate "wet" interfaces. A majority of the specific interfaces are dry and most of the crystal packing interfaces are wet, but counterexamples exist in both categories. Water molecules at interfaces form hydrogen bonds with protein groups, with a preference for the main-chain carbonyl and the charged side-chains of Glu, Asp, and Arg. These interactions are essentially the same in specific and nonspecific interfaces, and very similar to those observed elsewhere on the protein surface. Water-mediated polar interactions are as abundant at the interfaces as direct protein-protein hydrogen bonds, and they may contribute to the stability of the assembly.  相似文献   

17.
The increasing number of solved protein structures provides a solid number of interfaces, if protein-protein interactions, domain-domain contacts, and contacts between biological units are taken into account. An interface library gives us the opportunity to identify surface regions on a target molecule that are similar by local structure and residue composition. If both unbound components of a possible protein complex exhibit structural similarities to a known interface, the unbound structures can be superposed onto the known interfaces. The approach is accompanied by two mathematical problems. Protein surfaces have to be quickly screened by thousands of patches, and similarity has to be evaluated by a suitable scoring scheme. The used algorithm (NeedleHaystack) identifies similar patches within minutes. Structurally related sites are recognized even if only parts of the template patches are structurally related to the interface region. A successful prediction of the protein complex depends on a suitable template of the library. However, the performed tests indicate that interaction sites are identified even if the similarity is very low. The approach complements existing ab initio methods and provides valuable results on standard benchmark sets.  相似文献   

18.
A global census of stereochemical metrics including interface size, hydropathy, amino acid propensities, packing and hydrogen bonding was carried out on 32 x-ray-elucidated structures of lectin-carbohydrate complexes covering eight different lectin families. It is shown that the interactions at primary binding subsites are more efficient than at other subsites. Another salient behavior found for primary subsites was a marked negative correlation between the interface size and the polar surface content. It is noteworthy that this demographic rule is delineated by lectins with unrelated phylogenetic origin, indicating that independent interface architectures have evolved through common optimization paths. The structural properties of lectin-carbohydrate interfaces were compared with those characterizing a set of 32 protein homodimers. Overall, the analysis shows that the stereochemical bases of lectin-carbohydrate and protein-protein interfaces differ drastically from each other. In comparison with protein-protein complexes, lectin-carbohydrate interfaces have superior packing efficiency, better hydrogen bonding stereochemistry, and higher interaction cooperativity. A similar conclusion holds in the comparison with protein-protein heterocomplexes. We propose that the energetic consequence of this better interaction geometry is a larger decrease in free energy per unit of area buried, feature that enables lectins and carbohydrates to form stable complexes with relatively small interface areas. These observations lend support to the emerging notion that systems differing from each other in their stereochemical metrics may rely on different energetic bases.  相似文献   

19.
20.
We compare the geometric and physical-chemical properties of interfaces involved in specific and non-specific protein-protein interactions in crystal structures reported in the Protein Data Bank. Specific interactions are illustrated by 70 protein-protein complexes and by subunit contacts in 122 homodimeric proteins; non-specific interactions are illustrated by 188 pairs of monomeric proteins making crystal-packing contacts selected to bury more than 800 A2 of protein surface. A majority of these pairs have 2-fold symmetry and form "crystal dimers" that cannot be distinguished from real dimers on the basis of the interface size or symmetry. The chemical and amino acid compositions of the large crystal-packing interfaces resemble the protein solvent-accessible surface. These interfaces are less hydrophobic than in homodimers and contain much fewer fully buried atoms. We develop a residue propensity score and a hydrophobic interaction score to assess preferences seen in the chemical and amino acid compositions of the different types of interfaces, and we derive indexes to evaluate the atomic packing, which we find to be less compact at non-specific than at specific interfaces. We test the capacity of these parameters to identify homodimeric proteins in crystal structures, and show that a simple combination of the non-polar interface area and the fraction of buried interface atoms assigns the quaternary structure of 88% of the homodimers and 77% of the monomers in our data set correctly. These success rates increase to 93-95% when the residue propensity score of the interfaces is taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号