首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs.  相似文献   

2.
We show here that, although genes constitute only a small percentage of the maize genome, it is possible to identify them phenotypically as Ac receptor sites. Simple and efficient Ac transposition assays based on the well-studied endosperm markers bz and wx were used to generate a collection of >1300 independent Ac transposants. The majority of transposed Ac elements are linked to either the bz or the wx donor loci on chromosome 9. A few of the insertions produce obvious visible phenotypes, but most of them do not, suggesting that these populations will be more useful for reverse genetics than for forward transposon mutagenesis. An inverse polymerase chain reaction method was adapted for the isolation of DNA adjacent to the transposed Ac elements (tac sites). Most Ac insertions were into unique DNA. By sequencing tac sites and comparing the sequences to existing databases, insertions were identified in a number of putative maize genes. The expression of most of these genes was confirmed by RNA gel blot analysis. We report here the isolation and characterization of the first 46 tac sites from the two insertion libraries.  相似文献   

3.
Activator/Dissociation (Ac/Ds) transposable elements have been used in maize insertional mutagenesis as a complement to Mutator (Mu). In this study, to further improve the efficiency of the Ac/Ds mutagenesis system, we adopted apt1-m1 (Ac) on the long arm of chromosome 9 (9L) as a donor Ac to create an Ac insertion library. This system is based on the negative selection pressure against the donor Ac, and it was highly efficient for isolating new transposition events. We obtained 9,625 transposition events from 1083 F1 ears with an average transposition rate of 8.66?% (rates ranged from 1.11 to 29.73?%). We also adopted a modified PCR-based genome walking strategy to improve the efficiency of the new method for isolating transposon-flanking sequences. This method is more efficient than the Southern-based method that was used in previous studies. A validation step was developed to distinguish transposon tags derived from newly transposed Ac or Ds elements. Using this PCR-based method, we isolated 67 inheritable flanking sequences from the apt1-m1 (Ac) transposition library; of these, 51 were confirmed as tr-Ac-flanking sequences and 11 were tr-Ds-flanking sequences. Similar to other Ac donors from different loci, the apt1-m1 (Ac) system also exhibited a preference for short distance transposition. In this study, we have further improved the Ac mutagenesis system in maize for gene isolation and functional genomics studies.  相似文献   

4.
We have shown before that the Ac element from the maize bz-m2(Ac) allele, located in the short arm of chromosome 9 (9S), transposes preferentially to sites that are linked to the bz donor locus. Yet, about half of the Ac transpositions recovered from bz-m2(Ac) are in receptor sites not linked to the donor locus. In this study, we have analyzed the distribution of those unlinked receptor sites. Thirty-seven transposed Ac (trAc) elements that recombined independently of the bz locus were mapped using a set of wx reciprocal translocations. We found that the distribution of unlinked receptor sites for trAs was not random. Ten trAcs mapped to 9L, i.e., Ac had transposed to sites physically, if not genetically, linked to the donor site. Among chromosomes other than 9, the Ac element of bz-m2(Ac) appeared to have transposed preferentially to certain chromosomes, such as 5 and 7, but infrequently to others, such as 1, the longest chromosome in the maize genome. The seven trAc elements in chromosome 5 were mapped relative to markers in 5S and 5L and localized to both arms of 5. We also investigated the transposition of Ac to the homolog of the donor chromosome. We found that Ac rarely transposes from bz-m2(Ac) to the homologous chromosome 9. The clustering of Ac receptor sites around the donor locus has been taken to mean that a physical association between the donor site and nearby receptor sites occurs during transposition. The preferential occurrence of 9L among chromosomes harboring unlinked receptor sites would be expected according to this model, since sites in 9L would tend to be physically closer to 9S than sites in other chromosomes. The nonrandom pattern seen among the remaining chromosomes could reflect an underlying nuclear architecture, i.e., an ordering of the chromosomes in the interphase nucleus, as suggested from previous cytological observations.  相似文献   

5.
Bai L  Singh M  Pitt L  Sweeney M  Brutnell TP 《Genetics》2007,175(3):981-992
The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in the 5'-UTR and coding region of the predicted Ps1 gene. To generate a stable allelic series, we employed genetic screens and identified 83 germinally heritable ps1 excision alleles. Molecular characterization of these excision alleles revealed a position-dependent bias in excision allele frequencies and the predominance of 7- and 8-bp footprint products. In total, 19 unique ps1 excision alleles were generated in this study, including several that resulted in weak mutant phenotypes. The analysis of footprint alleles suggests a model of Ac excision in maize that is consistent with recent in vitro studies of hAT element excision. Importantly, the genetic and molecular methods developed in this study can be extended to generate novel allelic variation at any Ac-tagged gene in the genome.  相似文献   

6.
Ac as a tool for the functional genomics of rice   总被引:13,自引:0,他引:13  
To examine whether the maize autonomous transposable element Ac can be used for the functional analysis of the rice genome, we used Southern blot analysis to analyze the behaviour of Ac in 559 rice plants of four transgenic families through three successive generations. All families showed highly active transposition of Ac, and 103 plants (18.4%) contained newly transposed Ac insertions. In nine of the 12 independent transpositions analyzed, their germinal transmission was detected. Partial sequencing of 99 Ac-flanking sequences revealed that 21 clones exhibited significant similarities with protein-coding genes in databases and four of them matched rice cDNA sequences. These results indicate preferential Ac transposition into protein-coding rice genes. To examine the feasibility of PCR-based screening of gene knockouts in rice Ac plants, we prepared bulked genomic DNA from the leaves of approximately 6000 rice Ac plants and pooled the DNA according to a three-dimensional matrix. Of 14 randomly selected genes, two gene knockouts were identified, and one encoding a rice cytochrome P450 (CYP86) gene was shown to be stably inherited to the progeny. Together, these results suggest that Ac can be efficiently used for the functional analysis of the rice genome.  相似文献   

7.
Transposition of the maize autonomous element Ac (Activator) was investigated in barley (Hordeum vulgare L.) with the aim of developing a transposon tagging system for the latter. The Ac element was introduced into meristematic tissue of barley by microprojectile bombardment. Transposon activity was then examined in the resulting transgenic plants. Multiple excision events were detected in leaf tissue of all plant lines. The mobile elements generated empty donor sites with small DNA sequence alterations, similar to those found in maize. Reintegration of Ac at independent genomic loci in somatic tissue was demonstrated by isolation of new element-flanking regions by AIMS-PCR (amplification of insertion-mutagenized sites). In addition, transmission of transposed Ac elements to progeny plants was confirmed. The results indicate that the introduced Ac element is able to transpose in barley. This is a first step towards the establishment of a transposon tagging system in this economically important crop.  相似文献   

8.
Although it has been known for some time that the maize transposon Ac can mutate to Ds by undergoing internal deletions, the mechanism by which these mutations arise has remained conjectural. To gain further insight into this mechanism in maize we have studied a series of Ds elements that originated de novo from Ac elements at known locations in the genome. We present evidence that new, internally deleted Ds elements can arise at the Ac donor site when Ac transposes to another site in the genome. However, internal deletions are rare relative to Ac excision footprints, the predominant products of Ac transposition. We have characterized the deletion junctions in five new Ds elements. Short direct repeats of variable length occur adjacent to the deletion junction in three of the five Ds derivatives. In the remaining two, extra sequences or filler DNA is inserted at the junction. The filler DNAs are identical to sequences found close to the junction in the Ac DNA, where they are flanked by the same sequences that flank the filler DNA in the deletion. These findings are explained most simply by a mechanism involving error-prone DNA replication as an occasional alternative to end-joining in the repair of Ac-generated double-strand breaks.  相似文献   

9.
Transposition of the maize activator element in transgenic rice plants.   总被引:8,自引:0,他引:8  
Transposition of the maize Activator (Ac) element was observed in transgenic rice. After protoplast transformation, Ac excision from an interrupted hygromycin phosphotransferase gene was monitored by appearance of the hygromycin-resistant colonies. The frequency of Ac excision, based on the biological assay was up to 19%. Southern hybridization analysis indicated that at least one copy per genome of the hygromycin-resistance gene was reconstituted after Ac excision and that the transposed Ac element was reintegrated into the rice genome. Analysis of DNA sequences at 14 empty donor sites indicated that the Ac element was excised in rice in a similar manner as maize. The excision of an Ac mutant in which a 1.3 kbp Tn903 fragment was inserted at a unique BamHI site so as to disrupt binding of the putative transposase was not detected by DNA analysis. These results demonstrated that the maize Ac element might be used as an effective heterologous transposon for mutagenesis and gene tagging in rice, an important food crops.  相似文献   

10.
We have investigated the distribution of transposed Acs in the tomato genome. Our approach has been to clone the regions flanking the T-DNAs and transposed Acs from two transgenic lines of tomato and place these sequences on the tomato restriction fragment length polymorphism (RFLP) map. The distribution of transposed Acs around the T-DNA and at locations unlinked to the T-DNA indicates that Ac transposes to linked and unlinked sites in tomato as it does in maize. The structure and terminal sequence of these cloned elements shows that Ac remains intact after transposition. We discuss these results and their bearing on gene tagging strategies using Ac and Ds.  相似文献   

11.
In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analysed in order to evaluate the gene-tagging efficiency. The 3' end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3' end of the Ds in rice. Nearly 80% of Ds elements were excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds which underwent secondary transposition in the later cultures. Eight per cent of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybridization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds-mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a large scale mutagenesis using a heterologous Ac/Ds family in rice.  相似文献   

12.
We investigated physical distances and directions of transposition of the maize transposable element Ac in tobacco cultured cells. We introduced a T-DNA construct that carried a non-autonomous derivative of Ac (designated dAc-I-RS) that included sites for cleavage by restriction endonuclease MluI. Another cleavage site was also introduced into the T-DNA region outside of the dAc-I-RS transposable element. The tobacco cultured cell line BY-2 was transformed with the T-DNA and several transformed lines that had a single copy of the T-DNA at a different chromosomal location were isolated. These lines were co-cultured with Agrobacterium tumefaciens cells that carried a cDNA for the Ac transposase gene under the control of various promoters. Sublines of cultured cells in which dAc-I-RS had been transposed, were isolated. The genomic DNAs of these sublines were isolated and digested with MluI. Sizes of DNA segments generated by digestion were determined by pulse-field gel electrophoresis. Our results showed that 20 to 70% of transposition events had occurred within several hundreds kilo-base pairs (kb) on the same chromosome. These results demonstrate that the Ac-Ds element preferentially transposed to regions near the original site in a tobacco chromosome. In addition, the present results are an example of asymmetric transposition as demonstrated by the distance of transposition on the chromosome.  相似文献   

13.
Zhang J  Peterson T 《Genetics》2004,167(4):1929-1937
In classical "cut-and-paste" transposition, transposons are excised from donor sites and inserted at new locations. We have identified an alternative pathway in which transposition involves the 5' end of an intact Ac element and the 3' end of a nearby terminally deleted fAc (fractured Ac). The Ac and fAc elements are inserted at the maize p1 locus on chromosome 1s in the same orientation; the adjacent ends of the separate elements are thus in reversed orientation with respect to each other and are separated by a distance of approximately 13 kb. Transposition involving the two ends in reversed orientation generates inversions, deletions, and a novel type of local rearrangement. The rearrangement breakpoints are bounded by the characteristic footprint or target site duplications typical of Ac transposition reactions. These results demonstrate a new intramolecular transposition mechanism by which transposons can greatly impact genome evolution.  相似文献   

14.
P. Athma  E. Grotewold    T. Peterson 《Genetics》1992,131(1):199-209
The P-rr allele of the maize P gene regulates the synthesis of pigments derived from flavan-4-ol in the pericarp, cob glumes and other floral organs. We characterized 21 P alleles derived by intragenic transposition of Ac from three known positions. Ac transpositions can occur in either direction in the P gene, and with no apparent minimum distance: in one case Ac transposed just 6 bp from its original insertion site. However, the distribution of transposed Ac elements was markedly nonrandom: of 19 transposed Ac elements derived from a single Ac donor, 15 were inserted in a 1.1-kb region at the 5' end of P, while none had inserted in an adjacent 3.2-kb intronic region. All of the Ac insertions affect both pericarp and cob glume pigmentation, providing further evidence that the P-rr allele contains a single gene required for both pericarp and cob glume pigmentation. The distribution of the inserted Ac elements and the phenotype conditioned by each allele suggests a structure of P-rr which is similar to that previously determined molecularly. Possible explanations for the nonrandom distribution of transposed Ac elements are discussed.  相似文献   

15.
We have analyzed donor and target sites of the mobile element Activator (Ac) that are altered as a result of somatic transposition from the P locus in maize. Previous genetic analysis has indicated that the two mitotic daughter lineages which result from Ac transposition from P differ in their Ac constitution at the P locus. Both lineages, however, usually contain transposed Ac elements which map to the same genetic position. Using methylation-sensitive restriction enzymes and genomic blot analysis, we identified Ac elements at both the donor P locus and Ac target sites and used this assay to clone the P locus and to identify transposed Ac elements. Daughter lineages were shown to be mitotic descendants from a single transposition event. When both lineages contained Ac genetic activity, they both contained a transposed Ac element on identical genomic fragments independent of the genetic position of the target site. This indicates that in the majority of cases, Ac transposition takes place after replication of the donor locus but before completion of replication at the target site.  相似文献   

16.
The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene beta-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.  相似文献   

17.
The autonomous maize transposon Activator (Ac) has been used in maize for gene isolation by tagging and may prove similarly useful in other species. To test the feasibility of gene tagging with heterospecific transposons, we have examined three key genetic properties of a slightly modified Ac in tobacco. First, we show that frequencies of germinal excision of this Ac element from the antibiotic resistance gene streptomycin phosphotransferase can be comparable with or slightly lower than in maize. Second, we show that about half of the progeny carrying a germinal excision product also carry a transposed Ac. Last, we have mapped transposed Ac locations relative to the streptomycin transferase gene excision product and have shown that as in maize Ac in tobacco preferentially transposes to genetically linked sites.  相似文献   

18.
Dooner HK  Belachew A 《Genetics》1989,122(2):447-457
The pattern of transposition of Ac from the mutable allele bz-m2(Ac) has been investigated. Stable (bz-s) and finely spotted (bz-m(F)) exceptions were selected from coarsely spotted bz-m2(Ac) ears. The presence or absence of a transposed Ac (trAc) in the genome was determined and, when present, the location of the trAc was mapped relative to the flanking markers sh and wx. The salient general features of Ac transposition to sites linked to bz are that the receptor sites tend to be clustered on either side of the bz donor site and that transposition is bidirectional and nonpolar. Thus, the symmetrical clustering in the distribution of receptor sites adjacent to bz differs from the asymmetrical clustering reported in 1984 for the P locus by I. M. GREENBLATT. Though Ac tends to transpose preferentially to closely linked sites, an appreciable fraction of Ac transpositions from bz-m2(Ac) is to unlinked sites: 41% among bz-s derivatives and 59% among bz-m(F) derivatives. Many transposition events among the bz-m(F) selections result in kernels carrying a genetically noncorresponding embryo. These can be interpreted as twin sectors arising at one of the megagametophytic mitoses. The bz locus data fit the earlier (1962) model of I. M. GREENBLATT and R. A. BRINK in which transposition takes place from a replicated donor site to either an unreplicated or replicated receptor site.  相似文献   

19.
20.
Active Activator (Ac) elements undergo mutations to become nonautonomous Dissociation (Ds) elements at a low frequency. To understand the mechanism of Ds formation, we have developed high-throughput genetic and molecular screens to identify these rare Ds derivatives generated from any Ac insertion in the maize genome. Using these methods we have identified 15 new Ds elements derived from Ac insertions at eight different loci. Approximately half of the Ds elements contain filler DNA inserted at the deletion junction that is derived from sequences within or adjacent to Ac. In contrast to previous reports, several of these Ds elements lack direct repeats flanking the deletion junctions and filler DNA in the donor Ac. To accommodate our findings and those of others, we propose a model of slip mispairing during error-prone repair synthesis to explain the formation of state II Ds elements in maize. We discuss the use of these lines and molecular techniques developed here to capture somatic Ds transposition events in two-component Ac/Ds tagging programs in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号