首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of (13)C,(15)N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional (1)H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and (15)N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.  相似文献   

2.
Antimicrobial peptides and their precursor molecules form a central part of human and mammalian innate immunity. The underlying genes have been thoroughly investigated and compared for a considerable number of species, allowing for phylogenetic characterization. On the phenotypical side, an ever-increasing number of very varied and distinctive influences of antimicrobial peptides on the innate immune system are reported. The basic biophysical understanding of mammalian antimicrobial peptides, however, is still very limited. This is especially unsatisfactory since knowledge of structural properties will greatly help in the understanding of their immunomodulatory functions. The focus of this review article will be on LL-37, the only cathelicidin-derived antimicrobial peptide found in humans. LL-37 is a 37-residue, amphipathic, helical peptide found throughout the body and has been shown to exhibit a broad spectrum of antimicrobial activity. It is expressed in epithelial cells of the testis, skin, the gastrointestinal tract, and the respiratory tract, and in leukocytes such as monocytes, neutrophils, T cells, NK cells, and B cells. It has been found to have additional defensive roles such as regulating the inflammatory response and chemo-attracting cells of the adaptive immune system to wound or infection sites, binding and neutralizing LPS, and promoting re-epthelialization and wound closure. The article aims to report the known biophysical facts, with an emphasis on structural evidence, and to set them into relation with insights gained on phylogenetically related antimicrobial peptides in other species. The multitude of immuno-functional roles is only outlined. We believe that this review will aid the future work on the biophysical, biochemical and immunological investigations of this highly intriguing molecule.  相似文献   

3.
Antimicrobial peptides and their precursor molecules form a central part of human and mammalian innate immunity. The underlying genes have been thoroughly investigated and compared for a considerable number of species, allowing for phylogenetic characterization. On the phenotypical side, an ever-increasing number of very varied and distinctive influences of antimicrobial peptides on the innate immune system are reported. The basic biophysical understanding of mammalian antimicrobial peptides, however, is still very limited. This is especially unsatisfactory since knowledge of structural properties will greatly help in the understanding of their immunomodulatory functions. The focus of this review article will be on LL-37, the only cathelicidin-derived antimicrobial peptide found in humans. LL-37 is a 37-residue, amphipathic, helical peptide found throughout the body and has been shown to exhibit a broad spectrum of antimicrobial activity. It is expressed in epithelial cells of the testis, skin, the gastrointestinal tract, and the respiratory tract, and in leukocytes such as monocytes, neutrophils, T cells, NK cells, and B cells. It has been found to have additional defensive roles such as regulating the inflammatory response and chemo-attracting cells of the adaptive immune system to wound or infection sites, binding and neutralizing LPS, and promoting re-epthelialization and wound closure. The article aims to report the known biophysical facts, with an emphasis on structural evidence, and to set them into relation with insights gained on phylogenetically related antimicrobial peptides in other species. The multitude of immuno-functional roles is only outlined. We believe that this review will aid the future work on the biophysical, biochemical and immunological investigations of this highly intriguing molecule.  相似文献   

4.
Expression and purification of a recombinant LL-37 from Escherichia coli   总被引:2,自引:0,他引:2  
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

5.
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic α-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as 15N, 13C and/or 2H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C18 column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the 15N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform 15N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

6.
Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.  相似文献   

7.
LL-37 is a cationic, amphipathic alpha-helical antimicrobial peptide found in humans that kills cells by disrupting the cell membrane. To disrupt membranes, antimicrobial peptides such as LL-37 must alter the hydrophobic core of the bilayer. Differential scanning calorimetry and deuterium ((2)H) NMR experiments on acyl chain perdeuterated lipids demonstrate that LL-37 inserts into the hydrophobic region of the bilayer and alters the chain packing and cooperativity. The results show that hydrophobic interactions between LL-37 and the hydrophobic acyl chains are as important for the ability of this peptide to disrupt lipid bilayers as its electrostatic interactions with the polar headgroups. The (2)H NMR data are consistent with the previously determined surface orientation of LL-37 (Henzler Wildman, K. A., et al. (2003) Biochemistry 42, 6545) with an estimated 5-6 A depth of penetration of the hydrophobic face of the amphipathic helix into the hydrophobic interior of the bilayer. LL-37 also alters the material properties of lipid bilayers, including the area per lipid, hydrophobic thickness, and coefficient of thermal expansion in a manner that varies with lipid type and temperature. Comparison of the effect of LL-37 on 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC-d(31)) and 1,2-dimyristoyl-phosphatidylcholine (DMPC-d(54)) at different temperatures demonstrates the importance of bilayer order in determining the type and extent of disordering and disruption of the hydrophobic core by LL-37. One possible explanation, which accounts for both the (2)H NMR data presented here and the known surface orientation of LL-37 under identical conditions, is that bilayer order influences the depth of insertion of LL-37 into the hydrophobic/hydrophilic interface of the bilayer, altering the balance of electrostatic and hydrophobic interactions between the peptide and the lipids.  相似文献   

8.
hCAP18/LL-37 is the sole human cathelicidin; a family of host defence peptides with key roles in innate host defence. hCAP18/LL-37 is expressed primarily by neutrophils and epithelial cells, but its production and function in the lower genital tract is largely uncharacterised. Despite the significant roles for cathelicidin in multiple organs and inflammatory processes, its impact on infections that could compromise fertility and pregnancy is unknown. The aim of this study was to investigate cathelicidin production, regulation and function in the cervix. hCAP18/LL-37 was found to be present in cervicovaginal secretions collected from women in the first trimester of pregnancy and to be expressed at significantly higher levels in samples from women with alterations in vaginal bacterial flora characteristic of bacterial vaginosis. In endocervical epithelial cell lines, expression of the gene encoding hCAP18/LL-37 (CAMP) was not affected by TLR agonists, but was found to be up-regulated by both 1, 25 hydroxyvitamin D3 and 25 hydroxyvitamin D3. However, no association was found between serum levels of vitamin D and hCAP18/LL-37 concentrations in cervicovaginal secretions (n = 116). Exposure to synthetic LL-37 had a pro-inflammatory effect on endocervical epithelial cell lines, increasing secretion of inflammatory cytokine IL-8. Together these data demonstrate inducible expression of hCAP18/LL-37 in the female lower reproductive tract in vivo and suggest the capacity for this peptide to modulate host defence to infection in this system. Further investigation will elucidate the effects of hCAP18/LL-37 on the physiology and pathophysiology of labour, and may lead to strategies for the prevention of infection-associated preterm birth.  相似文献   

9.
Cathelicidins such as the human 37-amino acid peptide (LL-37) are peptides that not only potently kill microbes but also trigger inflammation by enabling immune recognition of endogenous nucleic acids. Here, a detailed structure–function analysis of LL-37 was performed to understand the details of this process. Alanine scanning of 34-amino acid peptide (LL-34) showed that some variants displayed increased antimicrobial activity against Staphylococcus aureus and group A Streptococcus. In contrast, different substitutions clustered on the hydrophobic face of the LL-34 alpha helix inhibited the ability of those variants to promote type 1 interferon expression in response to U1 RNA or to present U1 to the scavenger receptor (SR) B1 on the keratinocyte cell surface. Small-angle X-ray scattering experiments of the LL-34 variants LL-34, F5A, I24A, and L31A demonstrated that these peptides form cognate supramolecular structures with U1 characterized by inter-dsRNA spacings of approximately 3.5 nm, a range that has been previously shown to activate toll-like receptor 3 by the parent peptide LL-37. Therefore, while alanine substitutions on the hydrophobic face of LL-34 led to loss of binding to SRs and the complete loss of autoinflammatory responses in epithelial and endothelial cells, they did not inhibit the ability to organize with U1 RNA in solution to associate with toll-like receptor 3. These observations advance our understanding of how cathelicidin mediates the process of innate immune self-recognition to enable inert nucleic acids to trigger inflammation. We introduce the term “innate immune vetting” to describe the capacity of peptides such as LL-37 to enable certain nucleic acids to become an inflammatory stimulus through SR binding prior to cell internalization.  相似文献   

10.
Binding of lipopolysaccharide (LPS) to macrophages results in proinflammatory cytokine secretion. In extreme cases it leads to endotoxic shock. A few innate immunity antimicrobial peptides (AMPs) neutralize LPS activity. However, the underlying mechanism and properties of the peptides are not yet clear. Toward meeting this goal we investigated four AMPs and their fluorescently labeled analogs. These AMPs varied in composition, length, structure, and selectivity toward cells. The list included human LL-37 (37-mer), magainin (24-mer), a 15-mer amphipathic alpha-helix, and its D,L-amino acid structurally altered analog. The peptides were investigated for their ability to inhibit LPS-mediated cytokine release from RAW264.7 and bone marrow-derived primary macrophages, to bind LPS in solution, and when LPS is already bound to macrophages (fluorescence spectroscopy and confocal microscopy), to compete with LPS for its binding site on the CD14 receptor (flow cytometry) and affect LPS oligomerization. We conclude that a strong binding of a peptide to LPS aggregates accompanied by aggregate dissociation prevents LPS from binding to the carrier protein lipopolysaccharide-binding protein, or alternatively to its receptor, and hence inhibits cytokine secretion.  相似文献   

11.
The role of cathelicidins in the innate host defenses of mammals   总被引:5,自引:0,他引:5  
The cathelicidin peptides comprise one of several families of antimicrobial peptides that are found in neutrophils and epithelia as components of the early host defenses of mammals against infection. All cathelicidin family members are synthesized and stored in cells as two-domain proteins. These are split on demand to produce a cathelin protein and an antimicrobial peptide. Accumulating evidence indicates that both the cathelin portion and the C-terminal peptide exert biological activities connected with host protection. This review presents an overview of the structure and biology of cathelicidins and discusses recent progress in cathelicidin research with emphasis on the functional properties and role in host defense of the human cathelicidin hCAP18/LL-37. Although investigators initially concentrated their attention on antibiotic activity, it is becoming clear now that LL-37 is a multifunctional molecule that may mediate various host responses, and thus represents an essential component of the innate immune system in humans.  相似文献   

12.
LL-23 is a natural peptide corresponding to the 23 N-terminal amino acid residues of human host defense cathelicidin LL-37. LL-23 demonstrated, compared to LL-37, a conserved ability to induce the chemokine MCP-1 in human peripheral blood mononuclear cells, a lack of ability to suppress induction of the pro-inflammatory cytokine TNF-α in response to bacterial lipopolysaccharides (LPS), and reduced antimicrobial activity. Heteronuclear multidimensional nuclear magnetic resonance (NMR) characterization of LL-23 revealed similar secondary structures and backbone dynamics in three membrane-mimetic micelles: SDS, dodecylphosphocholine (DPC), and dioctanoylphosphatidylglycerol. The NMR structure of LL-23 determined in perdeuterated DPC contained a unique serine that segregated the hydrophobic surface of the amphipathic helix into two domains. To improve our understanding, Ser9 of LL-23was changed to either Ala or Val on the basis of homologous primate cathelicidins. These changes made the hydrophobic surface of LL-23 continuous and enhanced antibacterial activity. While identical helical structures did not explain the altered activities, a reduced rate of hydrogen-deuterium exchange from LL-23 to LL-23A9 to LL-23V9 suggested a deeper penetration of LL-23V9 into the interior of the micelles, which correlated with enhanced activities. Moreover, these LL-23 variants had discrete immunomodulatory activities. Both restored the TNF-α dampening activity to the level of LL-37. Furthermore, LL-23A9, like LL-23, maintained superior protective MCP-1 production, while LL-23V9 was strongly immunosuppressive, preventing baseline MCP-1 induction and substantially reducing LPS-stimulated MCP-1 production. Thus, these LL-23 variants, designed on the basis of a structural hot spot, are promising immune modulators that are easier to synthesize and less toxic to mammalian cells than the parent peptide LL-37.  相似文献   

13.
Mechanism of lipid bilayer disruption by the human antimicrobial peptide,LL-37   总被引:10,自引:0,他引:10  
LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.  相似文献   

14.
Antimicrobial peptides produced by epithelial cells and neutrophils represent essential elements of innate immunity, and include the defensin and cathelicidin family of antimicrobial polypeptides. The human cathelicidin cationic antimicrobial protein-18 is an antimicrobial peptide precursor predominantly expressed in neutrophils, and its active peptide LL-37 is released from the precursor through the action of neutrophil serine proteinases. LL-37 has been shown to display antimicrobial activity against a broad spectrum of microorganisms, to neutralize LPS bioactivity, and to chemoattract neutrophils, monocytes, mast cells, and T cells. In this study we show that LL-37 activates airway epithelial cells as demonstrated by activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and increased release of IL-8. Epithelial cell activation was inhibited by the MAPK/ERK kinase (MEK) inhibitors PD98059 and U0126, by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, by blocking anti-EGFR and anti-EGFR-ligand Abs, and by the metalloproteinase inhibitor GM6001. These data suggest that LL-37 transactivates the EGFR via metalloproteinase-mediated cleavage of membrane-anchored EGFR-ligands. LL-37 may thus constitute one of the mediators by which neutrophils regulate epithelial cell activity in the lung.  相似文献   

15.
Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung’s host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (μM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50 = 50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection.  相似文献   

16.
Antimicrobial peptides constitute an indispensable component of innate immune system in organisms ranging from bacteria to man. Despite this, peptides lag far behind the conventional antibiotics in treating infections. The menace of multidrug-resistant bacteria, however, has revived the antimicrobial peptide research. We reasoned that the membrane-binding regions of bacterial proteins could be purposed to combat them. Here, we identify potent antimicrobial peptides from the C-terminal amphipathic helix of E. coli FtsA protein. The 11 and 13-residue peptides exhibited activity against E. coli, gentamicin-resistant MRSA, and C. albicans. The activity is little affected by the presence of salt and divalent cations. The peptides preferentially bind to the negatively-charged membranes as indicated by tryptophan fluorescence studies. The peptides permeabilize the E. coli outer and inner membranes at very promising concentrations suggesting membrane-disruption as one of the mechanisms of killing.  相似文献   

17.
Amphipathic alpha-helices play a crucial role in mediating the interaction of peptides and proteins with membranes. We have analyzed protein structures for the occurrence of 18-residue amphipathic helices. We find several of these alpha-helices having average hydrophobic moments and average hydrophobicities that would favor their interaction with membranes. We have analyzed the distribution of net charge, helix length, normalized frequency of occurrence, and propensities of the 20 amino acids in the delineated 18-residue helices. We have observed distinct differences in the frequencies of occurrence of polar and hydrophobic amino acids at positions 1-18 in amphipathic and nonamphipathic helices. There are also differences in propensities of the 20 amino acids to occur at positions 1-18 of amphipathic and nonamphipathic helices. Synthetic peptides corresponding to some of these surface-seeking helices do possess antibacterial and/or hemolytic activities. Knowledge of the distribution of charges in 18-residue surface-seeking amphipathic alpha-helices, as well as propensity of occurrence of amino acids at various positions, would be useful inputs in the de novo design of amphipathic peptides.  相似文献   

18.
New peptides for lipopolysaccharide (LPS) and lipoteichoic acid (LTA) neutralization in upper respiratory tract infections were developed and evaluated in terms of efficacy and safety for application in humans. Based on the sequence of the human antimicrobial peptide LL-37 we developed and investigated length variants, substitution analogues and modifications to stabilize the peptides to prevent enzymatic degradation and to improve efficacy. The most promising peptide appears P60.4, a 24 amino acid peptide with similar efficacy as LL-37 in terms of LPS and LTA neutralization and lower pro-inflammatory activity. In addition, the acetylated and amidated version of this peptide shows no toxicity and displays higher or equal antimicrobial activity compared to LL-37.  相似文献   

19.
The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds.  相似文献   

20.
In addition to its physical barrier against invading microorganisms, the skin produces antimicrobial peptides, human beta-defensins (hBDs) and cathelicidin LL-37, that participate in the innate host defense. Because IL-18 is produced by keratinocytes and involved in skin diseases in which hBDs and LL-37 are highly expressed, we hypothesized that these peptides would activate keratinocytes to secrete IL-18. We found that hBD-2, -3, and -4 and LL-37, but not hBD-1, activated normal human keratinocytes to secrete IL-18; this secretion reached peak strength at 3 h. In addition, the combination of peptides resulted in a synergistic effect on IL-18 secretion. We also revealed that hBD-2, -3, and -4 and LL-37 increased IL-18 mRNA expression, and that IL-18 secretion was more enhanced in keratinocytes differentiated in vitro with high Ca2+-containing medium. Furthermore, because IL-18 secretion induced by hBDs and LL-37 could not be suppressed by caspase-1 or caspase family inhibitors, and because these peptides failed to increase caspase-1 activity, we suggest that hBD- and LL-37-induced IL-18 secretion is probably via a caspase-1-independent pathway. To determine the molecular mechanism involved, we demonstrated that IL-18 secretion was through p38 and ERK1/2 MAPK pathways, because the inhibitors of p38 and ERK1/2, but not JNK, almost completely nullified IL-18 secretion. Moreover, hBD-2, -3, and -4 and LL-37 could induce the phosphorylation of p38 and ERK1/2, but not JNK. Thus, the ability of hBDs and LL-37 to induce IL-18 secretion by keratinocytes provides a new mechanism for these peptides in innate immunity and an understanding of their role in the pathogenesis of skin disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号