首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-intensity visible (LV) and near infrared (NI) irradiation from laser and nonlaser sources has been used to treat oncologic patients with complications that develop after surgical tumor resection and chemo- and radiation therapy. However, the question of the character of effect of this physiotherapeutic method on the proliferative activity of tumor cells in patients with oncopathology and cells that participate in the wound healing processes, i.e., fibroblasts (FBs) and keratinocytes (KCs), remains unanswered. In the present work, we studied the effect of the course of irradiation of patients with breast carcinoma (BC) in the postsurgical period with visible and NI light (480–3400 nm, 95% polarization, 40 mW/cm2, 12 J/cm2) on the proliferative activity of primary cultures of human FBs and KCs and of several cultures of human tumor cells (BT-474, HBL-100, Hs578T, and A431) in the presence of the blood serum of patients with BC. A 7-day course of phototherapy leads to an increase in the proliferation of FBs (compared to the initial level) and KC (compared to the postsurgical level) by 22 and 28%, respectively. The 7-day course of phototherapy leads to an increase in the proliferation of FBs (compared to the initial level) and KsC (compared to the postsurgical level) by 22 and 28%, respectively. The proliferative activity of BT-474, Hs578T, and A431 tumor cells decreased compared to the presurgery (initial) level by 31.5, 8.97, and 6.47%, respectively, and as compared to the postsurgical level by 32, 16, 8.65, and 6.26% for the BT-474, HBL-100, Hs578T, and A431 cells, respectively. The obtained results argue in favor of the oncologic safety of the course of phototherapy with visible and NI light of BC patients during postsurgical rehabilitation.  相似文献   

2.
3.
To identify potential cancer related glycoproteins in breast cancer cells, we enriched N-linked glycoproteins by lentil lectin from the human breast cancer cell line Hs578T and the normal breast cell line Hs578BST for proteomic comparison. Glycoproteins were separated and compared by two-dimensional electrophoresis. Twenty-four glycoproteins were identified that expressed remarkably differently, among which nine were involved in the progress of collagen synthesis. Prolyl 4-hydroxylase alpha polypeptide II (P4HA2) expression and influence in breast cancer was further investigated. Immunohistochemistry revealed that P4HA2 was upregulated in breast tumor cells compared with its adjacent normal tissues. Moreover, overexpression and RNA interference of P4HA2 showed that P4HA2 expression suppressed cell proliferation and migration in Hs578T in vitro.  相似文献   

4.
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.  相似文献   

5.
We have compared several breast cancer cell lines that differ in their responsiveness to TNF to determine the involvement of PKC isozymes in regulating sensitivity of breast cancer cells to TNF. While MCF-7 and BT-20 cells were responsive to TNF without any metabolic inhibitors, CAMA-1 and SKBR-3 cells responded to TNF in the presence of cycloheximide; MDA-MB-231 and Hs578t cells were resistant to TNF even in the presence of cycloheximide. Bisindolylmaleimide (BIM), an inhibitor of PKC, either alone (MCF-7 and BT-20) or in combination with cycloheximide enhanced sensitivity of these cells to TNF. The PKC isozyme profile of MCF-7 cells was similar to BT-20 cells and that of CAMA-1 cells was similar to SKBR-3 cells. MCF-7, BT-20 and MDA-MB-231 cells that were most responsive to BIM-mediated sensitization to TNF contained relatively high level of PKC epsilon and proteolytic cleavage of PKC epsilon correlated with TNF-induced cell death. BIM did not inhibit NF-kappa B activation by TNF but caused activation of caspases and enhanced cleavage of PKC delta and -epsilon. These results suggest that proteolytic cleavage of PKC epsilon may be associated with PKC inhibitor mediated sensitization of breast cancer cells to TNF.  相似文献   

6.
We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted Hs578T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide.  相似文献   

7.
8.
Epidemiological evidence suggests tea (Camellia sinensis L.) has chemopreventive effects against various tumors. Green tea contains many polyphenols, including epigallocatechin-3 gallate (EGCG), which possess anti-oxidant qualities. Reduction of chemically induced mammary gland carcinogenesis by green tea in a carcinogen-induced rat model has been suggested previously, but the results reported were not statistically significant. Here we have tested the effects of green tea on mammary tumorigenesis using the 7,12-dimethylbenz(a)anthracene (DMBA) Sprague-Dawley (S-D) rat model. We report that green tea significantly increased mean latency to first tumor, and reduced tumor burden and number of invasive tumors per tumor-bearing animal; although, it did not affect tumor number in the female rats. Furthermore, we show that proliferation and/or viability of cultured Hs578T and MDA-MB-231 estrogen receptor-negative breast cancer cell lines was reduced by EGCG treatment. Similar negative effects on proliferation were observed with the DMBA-transformed D3-1 cell line. Growth inhibition of Hs578T cells correlated with induction of p27(Kip1) cyclin-dependent kinase inhibitor (CKI) expression. Hs578T cells expressing elevated levels of p27(Kip1) protein due to stable ectopic expression displayed increased G1 arrest. Thus, green tea had significant chemopreventive effects on carcinogen-induced mammary tumorigenesis in female S-D rats. In culture, inhibition of human breast cancer cell proliferation by EGCG was mediated in part via induction of the p27(Kip1) CKI.  相似文献   

9.
Immunocytochemical detection of isolated tumor cells in peripheral blood and bone marrow is currently the most established method for monitoring early dissemination in epithelial cancer. In this study we used an immunomagnetic selection technique to develop an enrichment model for disseminated tumor cells in blood. Buffy coat cells spiked with varying numbers of BT-474 carcinoma cells were permeabilized and fixed, following which carcinoma cells were magnetically labelled with an anti-cytokeratin 8 mAb. Labelled cells were enriched by the use of magnetic columns. The eluted cytokeratin 8+ tumor cells were detected by flow cytometry and immunocytochemistry. Spiked samples were split and processed freshly in the immunomagnetic enrichment assay, as well as cryopreserved and processed in the assay after thawing. Enumeration of BT-474 cells demonstrated a detection limit of one BT-474 cell in 1.0 x 10(7) leukocytes in both fresh and cryopreserved-thawed samples. The pair wise comparison showed a significantly higher recovery of spiked BT-474 cells from freshly processed samples than from cryopreserved and thawed samples (57% vs 21%). Viability tests suggested that this outcome might be due to a greater susceptibility of BT-474 cells than buffy coat cells to the used cryopreservation and thawing technique. Altogether our findings show that the performance of the immunomagnetic enrichment assay on fresh samples is satisfactory with a recovery rate of almost 60% and a sensitivity of 10(-7). However, performance of the assay on cryopreserved and thawed cells needs to be improved.  相似文献   

10.
MnCl2 induced manganese-containing superoxide dismutase (MnSOD) expression (mRNA, immunoreactive protein, and enzyme activity) in human breast cancer Hs578T cells. The induction of MnSOD immunoreactive protein in Hs578T cells was inhibited by tiron (a metal chelator and superoxide scavenger), pyruvate (a hydrogen peroxide scavenger), or 2-deoxy-d-glucose (DG, an inhibitor of glycolysis and the hexose monophosphate shunt), but not by 5,5-dimethyl-1-pyrroline-1-oxide (a superoxide scavenger), N-acetyl cysteine (a scavenger for reactive oxygen species and precursor of glutathione), diphenylene iodonium (an inhibitor of flavoproteins such as NADPH oxidase and nitric oxide synthase), or SOD (a superoxide scavenger). Northern blotting demonstrated that tiron or DG affected at the mRNA level, while pyruvate affected Mn-induced MnSOD expression at both the mRNA and protein levels. These results demonstrate that Mn can induce MnSOD expression in cultured human breast cancer cells. Mn also induced apoptosis and necrosis in these cells. Since inhibitors of Mn-induced MnSOD induction did not affect cell viability, MnSOD induction is probably not the cause of the Mn-induced cell killing.  相似文献   

11.
Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 µM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 µM LPA, which remains high at 10 µM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling. G protein-coupled receptor; lysophosphatidic acid; chemotactic migration; GTPase  相似文献   

12.
13.
Dihydro-resveratrol (dihydro-R), a prominent polyphenol component of red wine, has a profound proliferative effect on hormone-sensitive tumor cell lines such as breast cancer cell line MCF7. We found a significant increase in MCF7 tumor cells growth rates in the presence of picomolar concentrations of this compound. The proliferative effect of dihydro-R was not observed in cell lines that do not express hormone receptors (MDA-MB-231, BT-474, and К-562).  相似文献   

14.
In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D 3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D 3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D 3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D 3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D 3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D 3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy.  相似文献   

15.
The interferon induced, dsRNA-activated, protein kinase, PKR, is a key regulator of translational initiation, playing an important role in the regulation of cell proliferation, apoptosis and transformation. PKR levels correlate inversely with proliferative activity in several human tumor systems. This inverse relationship breaks down in human invasive ductal breast carcinomas which exhibit high levels of PKR (Haines et al., Tumor Biol. 17 (1996) 5-12). Consistent with the data from human tumors, the levels of PKR in several breast carcinoma cell lines, MCF7, T47D, BT20, MDAMB231 and MDAMB468, are paradoxically high compared to those found in the normal breast cell lines MCF10A and Hs578Bst. The activity of affinity- or immuno-purified PKR from MCF7, T47D, and BT20 cells appears to be severely attenuated, as judged by its ability to autophosphorylate, or phosphorylate eIF2 alpha. Furthermore, the activity of the kinase from breast carcinoma cells is refractory to stimulation by dsRNA or heparin. However, PKR from breast carcinoma cells remains functional with respect to its ability to bind dsRNA. The activity of PKR from MCF10A cells is reduced by prior incubation with extracts from MCF7 cells, suggesting that MCF7 extracts contain a transdominant inhibitor of PKR. Deregulation of PKR may therefore provide a mechanism for the development or maintenance of a transformed phenotype of human breast carcinomas, mimicking the effects of manipulation of PKR or eIF2 activity observed in experimental systems. Thus, breast carcinomas may provide the first indication of a role for PKR in the pathogenesis of a naturally occurring human cancer.  相似文献   

16.
17.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

18.
Multifunctional phosphonium-lanthanide compounds that simultaneously possess paramagnetism, luminescence, and tumor mitochondrial targeting properties were prepared by use of a facile method. These compounds were fully characterized by use of 1H, 13C, 31P NMR, FT-IR, and elemental analyses. The thermal properties of these compounds including melting points and decomposition temperatures were investigated using DSC and TGA analyses. In addition, the paramagnetism, luminescence, and tumor targeting properties of these multifunctional compounds were confirmed by respective use of SQUID, fluorescence, and cell cytotoxicity studies. All compounds exhibited paramagnetism at room temperature, which could provide target delivery of these compounds to parts of the body containing tumor cells using a strong external magnetic field. In addition, these compounds display two major characteristic emissions originating from Dy3 +, which can be utilized for imaging tumor cells. The IC50 values of these compounds measured against normal breast cell line (Hs578Bst) are significantly greater than those measured against the corresponding carcinoma breast cell line (Hs578T), clearly indicating the selective tumor targeting properties of these compounds. Confocal fluorescence microscopy studies were used to confirm the yellowish-green fluorescence corresponding to the emission of dysprosium thiocyanate anion within cancer cells upon exposure of cancer cell lines such as human pancreatic carcinoma cell line (MIAPaCa-2) and human breast carcinoma (MDA-MB-231) to a solution of these phosphonium-dysprosium compounds.  相似文献   

19.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

20.
Reports that elasmobranchs (sharks, skates, and rays) may havea low incidence of disease have stimulated interest in understandingthe role of their immune system in this apparent resistance.Although research in this area may potentially translate intoapplications for human health, a basic understanding of theelasmobranch immune system components and how they functionis essential. As in higher vertebrates, elasmobranch fishespossess thymus and spleen, but in the absence of bone marrowand lymph nodes, these fish have evolved unique lymphomyeloidtissues, namely epigonal and Leydig organs. As conditions forshort-term culture of elasmobranch immune cells have becomebetter understood, the opportunity to examine functional activityof cytokine-like factors derived from conditioned culture mediumhas resulted in the identification of growth inhibitory activityagainst a variety of tumor cell lines. Specifically, the mediumenriched by short term culture of bonnethead shark (Sphyrnatiburo) epigonal cells (epigonal conditioned medium, ECM) hasbeen shown to inhibit the growth of mammalian tumor cell lines,including fibrosarcoma (WEHI-164), melanoma (A375.S2), B-celllymphoma (Daudi), T-cell leukemia (Jurkat), pancreatic cancer(PANC-1), ovarian cancer (NIH:OVCAR-3), and three breast carcinomacell lines (MCF7, HCC38, Hs578T). Of the cell lines tested,WEHI-164, A375.S2, Daudi, and Jurkat cells were among the mostsensitive to growth inhibitory activity of ECM whereas PANC-1and NIH:OVCAR-3 cells were among the least sensitive. In addition,ECM demonstrated preferential growth inhibition of malignantcells in assays against two different malignant/non-malignantcell line pairs (HCC38/HCC38 BL and Hs 578T/Hs 578Bst). Separationof protein components of ECM using SDS-PAGE resulted in a veryreproducible pattern of three major bands corresponding to molecularsizes of approximately 40–42 kD, 24 kD, and 17 kD. Activityis lost after heating at 75°C for 30 min, and can be diminishedby treatment with proteinase K and protease. Activity is notaffected by treating with trypsin, DNase I or RNase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号