首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A high-performance liquid chromatographic method was developed for the determination of a new podophyllotoxin derivative, TOP-53 (I), and TOP-53 glucoronide (II) as its major metabolite in rat plasma and urine. For the analysis of I, the sample was chromatographed on a reversed-phase C18 column with electrochemical detection after consecutive two-step liquid-liquid extractions. Compound II was determined as I after enzymatic hydrolysis of II. This method was validated sufficiently with respect to specificity, accuracy, and precision. The limiits of quantitation for both I and II were 2 ng/ml in plasma and 10 ng/ml in urine. The method is thus useful for the pharmacokinetic study of I.  相似文献   

2.
An analytical method for the determination of letrozole (CGS 20 267) in plasma and of letrozole and its metabolite, CGP 44 645, in urine is described. Automated liquid-solid extraction of compounds from plasma and urine was performed on disposable 100-mg C8 columns using the ASPEC system. The separation was achieved on an ODS Hypersil C18 column using acetonitrile-phosphate buffer, pH 7, as the mobile phase at a flow-rate of 1.5 ml/min. A fluorescence detector was used for the quantitation. The excitation and emission wavelengths were 230 and 295 nm, respectively. The limits of quantitation (LOQ) of letrozole in plasma and in urine were 1.40 nmol/l (0.4 ng/ml) and 2.80 nmol/l, respectively. The respective mean recoveries and coefficient of variation (C.V.) were 96.5% (9.8%) in plasma and 104% (7.7%) in urine. The LOQ of CGP 44 645 in urine was 8.54 nmol/l (2 ng/ml). The mean recovery was 108% (6.3%). The compounds were well separated from co-extracted endogenous components and no interferences were observed at the retention times of compounds. The sensitivity of this method for letrozole in plasma should be sufficient for kinetic studies in humans with single doses of 0.5 mg and possibly less.  相似文献   

3.
A heart-cut column-switching, ion-pair, reversed-phase HPLC system was used for the quantitation of efletirizine (EFZ) in biological fluids. The analyte and an internal standard (I.S.) were extracted from human EDTA plasma by C18 solid-phase extraction (SPE) using a RapidTrace® workstation. The eluent from the SPE was evaporated, reconstituted and injected onto the HPLC column. Urine samples were diluted and injected directly without the need of extraction. The compounds of interest were separated from most of the extraneous matrix materials by the first C18 column, and switched onto a second C18 column for further separation using a mobile phase of stronger eluting capability. Linearity range was 10–2000 ng ml−1 for plasma and 0.05–10 μg ml−1 for urine. The lower limit of quantitation (LOQ) was 10 ng from 1 ml of plasma, with a signal-to-noise ratio of 15:1. Inter-day precision and bias of quality control samples (QCs) were <5% for plasma and <7% for urine. Selectivity was established against six other antihistamines, three analogs of efletirizine, and on 12 control plasma lots and nine control urine lots. Recovery was 90.0% for EFZ and 89.5% for I.S. from plasma. One hundred samples can be processed in every 2.75 h on a 10-module RapidTrace® workstation with minimal human attention. Method ruggedness were tested on three brands of SPE and six different lots of one SPE brand. Performance ruggedness was demonstrated by different analysts on multiple HPLC systems. Analyte stability through sample storage, extraction process (benchtop, freeze–thaw, refrigeration after extraction) and chromatography (on-system, reinjection) was established.  相似文献   

4.
A method was developed for the rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine using high-performance liquid chromatography. A diethyl ether or hexane extract of the alkalinized biological samples was extracted with dilute acid which was chromatographed on a reversed-phase column using mixtures of acetonitrile and ammonium phosphate buffer as the mobile phase. Ultraviolet absorption at 254 nm was monitored for the detection and brompheniramine was employed as the internal standard for the quantitation. The effects of buffer, pH, and acetonitrile concentration in the mobile phase on the chromatographic separation were investigated. A mobile phase 20% acetonitrile in 0.0075 M phosphate buffer at a flow-rate of 2 ml/min was used for the assays of plasma and saliva samples. A similar mobile phase was used for urine samples. The drug and internal standard were eluted at retention volumes of less than 17 ml. The method can also be used to quantify two metabolites, didesmethyl- and desmethylchlorpheniramine, in the urine. The method can accurately measure chlorpheniramine levels down to 2 ng/ml in plasma or saliva using 1 ml of sample, and should be adequate for biopharmaceutical and pharmacokinetic studies. Various precautions for using the assay are discussed.  相似文献   

5.
A simple and sensitive method for quantitation of HSR-609 (I) in human plasma and urine was developed using HPLC with the fluorescence labelling reagent 4-(N,N-dimethylaminosulfonyl)-7-N-piperazino-2,1,3-benzoxadiazole (DBD-PZ). Compound I was extracted from human plasma and urine, and derivatized by reaction with DBD-PZ in the presence of Mukaiyama reagent A, an equimolar solution of 2,2′-dipyridyl disulfide (DPDS) and triphenylphosphine (TPP) in acetonitrile. The reaction mixture was cleaned up by liquid-liquid extraction following the derivatization. The conjugate was analyzed by ion-pair HPLC with fluorometric detection. The quantitation limits for I were 0.5 ng/ml in plasma and 5 ng/ml in urine. Using this method, plasma concentration and urinary excretion of I were studied after oral administration of I to human volunteers.  相似文献   

6.
A method for the simultaneous determination of de(N-methyl)-N-ethyl-8,9-anhydroerythromycin A 6,9-hemiacetal (EM523, I) and its three metabolites in human plasma and urine has been developed using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection. Plasma and urine samples spiked with erythromycin as an internal standard were extracted with a mixture of dichloromethane and diethyl ether under alkaline conditions. The ortanic layer was evaporated under a stream of nitrogen gas. The reconstituted sample was injected into an HPLC apparatus and separated on an ODS column using a gradient elution method. The elute was reacted on-line with a mixture of tris(2,2′-bipyridine) ruthenium(II) and peroxodisulfate, and the generated CL intensity was detected. Optimization of the CL reaction conditions resulted in a sensitive and stable CL intensity for the determination of I and its metabolites. The recovery of each compound from human plasma and urine, and the sensitivity, linearity, accuracy and precision of the method were satisfactory. The lower limits of quantitation for each compound using 0.2 ml of plasma and 0.1 ml of urine were 1 and 00 ng/ml, respectively. This method has been used for the determination of I in samples from clinical trials.  相似文献   

7.
A method is described for the qualiitative and quantitative determination of phenylbutazone and oxyphenbutazone in horse urine and plasma samples viewing antidoping control. A horse was administered intravenously with 3 g of phenylbutazone. For the qualitative determination, a screening by HPLC was performed after acidic extraction of the urine samples and the confirmation process was realized by GC-MS. Using the proposed method it was possible to detect phenylbutazone and oxyphenbutazone in urine for up to 48 and 120 h, respectively. For the quantitation of these drugs the plasma was deproteinized with acetonitrile and 20 gml were injected directly into the HPLC system equipped with a UV detector and LiChrospher RP-18 column. The mobile phase used was 0.01 M acetic acid in methanol (45:55, v/v). The limit of detection was 0.5 μg/ml for phenylbutazone and oxyphenbutazone and the limit of quantitation was 1.0 μg/ml for both drugs. Using the proposed method it was possible to quantify phenylbutazone up to 30 h and oxyphenbutazone up to 39 h after administration.  相似文献   

8.
Methods for the quantitation of doxapram in blood, plasma and urine have been developed. Following extraction, gas—liquid chromatography was used to separate doxapram from basic metabolites. Doxapram was detected by mass spectrometry for blood and plasma assays, and by flame ionisation for urine assays. The limit of reliable quantitation in blood and plasma was 10 ng and in urine 500 ng, the coefficients of variation being 6.37%, 1.72% and 2.31% respectively. To illustrate the clinical applicability of the assay methods, plasma, blood and urine levels were monitored in a premature newborn following an intravenous infusion of doxapram.  相似文献   

9.
Methods for the measurement of penicillin concentration in bovine plasma, kidney and urine were developed and validated. Detection was based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Phenethecillin was used as an internal standard. Plasma was extracted with acetonitrile using a method with a calculated limit of quantitation (LOQ) of 12 ng/mL. Kidney samples were homogenized in water and acetonitrile, then cleaned up on C18-bonded silica SPE cartridges. The LOQ of this procedure was 10 ng/g. Urine samples were diluted, filtered, and analyzed directly. The LOQ of this procedure was 63 ng/mL. The overall accuracy for plasma was 103% with coefficient of variation (CV) of 3%; for kidney, 96% and 11%, respectively, and for urine, 98% and 4%, respectively. These methods were applied to the analysis of plasma, urine, and kidney biopsy samples taken from standing animals that had been dosed with penicillin.  相似文献   

10.
Automated procedures for the determination of CGP 33 101 in plasma and the simultaneous determination of CGP 33 101 and its carboxylic acid metabolite, CGP 47 292, in urine are described. Plasma was diluted with water and urine with a pH 2 buffer prior to extraction. The compounds were automatically extracted on reversed-phase extraction columns and injected onto an HPLC system by the automatic sample preparation with extraction columns (ASPEC) automate. A Supelcosil LC-18 (5 μm) column was used for chromatography. The mobile phase was a mixture of an aqueous solution of potassium dihydrogen phosphate, acetonitrile and methanol for the assay in plasma, and of an aqueous solution of tetrabutylammonium hydrogen sulfate, tripotassium phosphate and phosphoric acid and of acetonitrile for the assay in urine. The compounds were detected at 230 nm. The limit of quantitation was 0.11 μml/l (25 ng/mol) for the assay of CGP 33 101 in plasma, 11 μmol/l (2.5 μg/ml) for its assay in urine and 21 μmol/l (5 μg/ml) for the assay of CGP 47 292 in urine.  相似文献   

11.
BAPTA free acid was identified as the main metabolic product of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(actoxymethyl ester) (BAPTA-AM), a neuroprotective agent in cerebral ischemia, in rats. In this paper, liquid chromatography-ultraviolet (LC-UV) and mass spectrometry/mass spectrometry (LC-MS/MS) methods were employed for the determination of BAPTA free acid in rat urine and feces and rat plasma, respectively. By liquid-liquid extraction and LC-UV analysis, a limit of quantitation of 1000 ng/ml using 0.2 ml rat urine for extraction and 250 ng/ml using 1 ml rat fecal homogenate supernatant for extraction could be reached. The assay was linear in the range of 1000-50,000 ng/ml for rat urine and 250-10,000 ng/ml for rat fecal homogenate supernatant. Because the sensitivity of the LC-UV method was apparently insufficient for evaluating the pharmacokinetic profile of BAPTA in rat plasma, a LC-MS/MS method was subsequently developed for the analysis of BAPTA free acid. By protein precipitation and LC-MS/MS analysis, the limit of quantitation was 5 ng/ml using 0.1 ml rat plasma and the linear range was 5.0-500 ng/ml. Both methods were validated and can be used to support a thorough preclinical pharmacokinetic evaluation of BAPTA-AM liposome injection.  相似文献   

12.
Alentamol hydrobromide, (+)-2-(dipropylamino)-2,3-dihydro-1H-phenalen-5-ol monohydrobromide, is a selective dopamine agonist currently being investigated for the treatment of schizophrenia. This paper describes a reversed-phase high-performance liquid chromatographic-based method for the quantification of alentamol in blood plasma and urine. The method utilizes solid-phase extraction with carboxylic acid-derivatized silica columns. A limit of quantitation of 0.1 ng/ml in plasma was achieved by virtue of selective extraction and fluorescence detection. Example chromatograms of plasma and urine specimens from clinical trials demonstrate the utility of the method.  相似文献   

13.
A method for the determination of dihydroetorphine hydrochloride, a powerful anaesthetic and analgesic drug, in biological fluids by GC-MS with selected-ion monitoring using etorphine as internal standard was established. Dihydroetorphine was extracted from human blood and urine with dichloromethane and then derivatized with N-heptafluorobutyrylimidazole after concentration to dryness. A dihydroetorphine monoheptafluorobutyl derivative was formed which showed good behavior on GC-MS with electronic-impact ionization. The main fragment, m/z 522, which is the base peak, was selected as the ion for quantitation and the corresponding ion, m/z 520, was selected for monitoring the internal standard, etorphine. The recoveries and coefficients of variation of the whole procedure were determined with five controlled dihydroetorphine-free urine and plasma samples spiked with different concentrations of dihydroetorphine. The concentration of dihydroetorphine for quantitation was in the range 1–20 ng/ml for urine and 2.5–250 ng/ml for plasma. The correlation coefficients of the standard curves are sufficient to determine the dihydroetorphine. The accuracy for quantitation of dihydroetorphine in urine and plasma is less than 10.6%.  相似文献   

14.
9-(3-Pyridylmethyl)-9-deazaguanine (BCX-34), a new purine nucleoside phosphorylase inhibitor, has selective immunosuppressive activity with potential therapeutic value in T-cell-mediated diseases. We now report a sensitive, specific and reproducible method for measurement of 9-(3-pyridylmethyl)-9-deazagunanine in biological fluids using high-performance liquid chromatography (HPLC). 9-(3-Pyridylmethyl)-9-deazagunanine was extracted from plasma using perchloric acid precipitation followed by passage through Sep-Pak C18 cartridges (average extraction efficiency, 64.6%). Standard curves were linear over the range of interest (28–1120 ng/ml in plasma and 200–4000 ng/ml in urine, r2>0.999). Within-day and between-day coefficients of variation were less than 8%. The limit of quantitation was 28 ng/ml in plasma and 200 ng/ml in urine. This HPLC method should be useful in future clinical studies with this drug.  相似文献   

15.
A quantitative liquid chromatography positive ion electrospray tandem mass spectrometric method for the simultaneous determination of sulforaphane, iberin and their metabolites in human urine and plasma is described. The stability of the metabolites was determined in aqueous solution and in human plasma. Gradient liquid chromatographic separation was performed on a Zorbax SB-Aq 3.5 microm (100 x 2.1mm) column, using a mobile phase (flow rate 0.25 mL/min) consisting of ammonium acetate buffer at pH 4 and acetonitrile. Butyl thiocarbamoyl l-cysteine was used as internal standard. The assay was linear (r(2)>0.99) over the range of 0.03-300 microM in urine and 0.03-15 microM in plasma with intra- and inter-day assay precision (<10% CV) and accuracy (<20%). The lower limits of quantitation were in the range of 10-150 nmol/L. The method has been used to report, for the first time, individual quantitative measurement of each of the mercapturic acid pathway metabolites of sulforaphane and iberin in both human plasma and urine following a dietary study of broccoli consumption.  相似文献   

16.
Diphenylmethoxyacetic acid (DPMA) is a major metabolite of diphenhydramine in monkeys, dogs, and humans. The metabolic fate of diphenhydramine (DPHM) in sheep is not yet well understood; however, preliminary studies have demonstrated the presence of DPMA in the plasma and urine of sheep following an intravenous bolus of DPHM. Our current studies employ the simultaneous intravenous co-administration of DPHM and the stable isotope analog of DPHM to investigate the pharmacokinetics of DPHM in sheep. In these studies, in order to investigate the pharmacokinetics of the DPMA metabolite, measurement of both unlabeled and stable-isotope labeled DPMA is required. Thus, a stable isotope analog of DPMA ([2H10]DPMA) was synthesized, characterized, and purified for use as an analytical standard. The quantitative method for the gas chromatography—electron-impact mass spectrometry (GC—EI-MS) analysis of DPMA and [2H10]DPMA used a single step liquid-liquid extraction procedure using toluene for sample cleanup. The samples were derivatized with N-methyl-N-(tert.-butyldimethylsilyl) trifluoroacetamide. A 1.0-μl aliquot of the prepared sample was injected into the GC-MS system and quantitated using selected-ion monitoring (SIM). One ion was monitored for each compound, namely, m/z 165 for the internal standard diphenylacetic acid, m/z 183 for DPMA, and m/z 177 for [2H10]DPMA. The ion chromatograms were free from chromatographic peaks co-eluting with the compound of interest. The calibration curve was linear from 2.5 ng/ml (limit of quantitation) to 250.0 ng/ml in both urine and plasma. The intra-day and inter-day variabilities of this assay method were within acceptable limits (below 20% at the limit of quantitation and below 10% at all other concentrations). This method was used to measure the concentration of DPMA and [2H10]DPMA in plasma and urine samples from a ewe in which equimolar amounts of DPHM and [2H10]DPHM were administered by an intravenous bolus dose via the femoral vein. DPMA appeared to persist longer in the plasma and the urine as compared to DPHM. This method is robust and reliable for the quantitation of DPMA and [2H10]DPMA in biological samples obtained from sheep (e.g. plasma and urine).  相似文献   

17.
A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.  相似文献   

18.
A sensitive and versatile high-performance liquid chromatographic assay for the determination of the calcium antagonist SIM6080 and its four N- and O-demethylated metabolites in plasma, urine and tissues has been developed and validated. A two-step extraction procedure is employed followed by reversed-phase liquid chromatographic analysis using ultraviolet detection. An isomer of SIM6080 was used as the internal standard. The analysis of spiked plasma, urine and tissues demonstrated the accuracy and precision of the assay with quantitation limits of 5 ng/ml (plasma and urine) or 100 ng/g (tissues). This assay has been used for urinary recovery and tissue distribution studies, as well as for toxicokinetic protocols.  相似文献   

19.
A stereoselective high-performance liquid chromatographic (HPLC) method is described for the selective and sensitive quantitation in human plasma of R-(+)- and S-(−)-enantiomers of remoxipride. Remoxipride was extracted from basified plasma into hexane-methyl-tert.-butyl ether (20:80, v/v), washed with sodium hydroxide (1.0 M), then back-extracted into phosphoric acid (0.1 M). A structural analog of remoxipride was used as an internal standard. The sample extracts were chromatographed using a silica-based derivatized cellulose chiral column, Chiralcel OD-R, and a reversed-phase eluent containing 30–32% acetonitrile in 0.1 M potassium hexafluorophosphate. Ultraviolet (UV) absorbance detection was performed at 214 nm. Using 0.5-ml plasma aliquots, the method was validated in the concentration range 0.02-2.0 μg/ml and was applied in the investigation of systemic inversion of remoxipride enantiomers in man.  相似文献   

20.
A solid-phase extraction (SPE) method for sample clean-up followed by a reversed-phase HPLC procedure for the assay of alinastina (pINN) in biological fluids is reported. The effects of the sample pH, composition of the washing and elution solvents and the nature of the SPE cartridge on recovery were evaluated. The selectivity of SPE was examined using spiked rat urine and plasma samples and the CH and PH cartridges gave rise to the cleanest extracts. The recoveries obtained in spiked rat urine and plasma samples were 91.2±2.7 and 99.9±2.8%, respectively. The proposed SPE method coupled off-line with a reserved-phase HPLC system with fluorimetric detection was applied to the quantitation of alinastine in real rat urine samples. The analytical method was also applied and validated for the determination of alinastine in dog plasma. The recovery from spiked dog plasma samples using the PH cartridge was around 65%. The within-day and between-day precisions were 7 and 12%, respectively. The detection and quantitation limits in dog plasma were 0.024 and 0.078 μg/ml, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号