首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Flagellar development during cell division was studied inCyanophora paradoxa using agarose-embedded cells, Nomarski optics and electronic flash photography. The cells bear two heterodynamic and differently oriented (anterior and posterior) flagella. Prior to cell division, cells produce two new anterior flagella while the parental anterior flagellum transforms into a posterior flagellum. The parental posterior flagellum remains a posterior flagellum throughout this and subsequent cell divisions. The development of a single flagellum thus extends through at least two cell cycles and flagellar heterogeneity is achieved by semiconservative distribution of the flagella during cell division. Based on these principles a universal numbering system for basal bodies and flagella of eukaryotic cells is proposed.  相似文献   

3.
Trophozoites of Giardia are equipped with a special organelle of attachment, essential for parasite survival and pathogenicity, the ventral disc. Although its basic structure is well established, its reorganization and assembly during cell replication is poorly understood. We addressed some of these problems with aid of conventional, confocal and electron microscopy. We found that dividing Giardia alternates attached and free swimming phases in accordance with functional competence of the parent or newly assembled discs. The division started in attached cells by detachment of the disc microtubules from basal bodies. Shortening and eventual loss of the giardin microribbons, and unfolding of the microtubular layer resulting in collapse of the disc chamber and parasite detachment underlined gradual disassembly of the parent disc skeleton. Two daughter discs assembled on the dorsal side of the attached cell, with their ventral sides exposed on the parent cell surface and their microtubular skeletons growing in counter-clockwise direction. A depression between the assembling discs marked the cleavage plane. The splitting continued during the free-swimming phase with ventral-ventral axial symmetry in a plane of the daughter discs. Finally, the daughter cells with fully developed discs but still connected tail to tail by a cytoplasmic bridge, attached to a substrate and terminated the division by a process resembling adhesion-dependent cytokinesis. The mode of assembly of the daughter discs and plane of the division is compatible with maintenance of the left-right asymmetry of the Giardia cytoskeleton in progeny, which cannot be satisfactorily explained by alternative models proposed so far.  相似文献   

4.
Summary Immunofluorescence microscopy, conventional and high voltage transmission electron microscopy were used to describe changes in the flagellar apparatus during cell division in the motile, coccolithbearing cells ofPleurochrysis carterae (Braarud and Fagerlund) Christensen. New basal bodies appear alongside the parental basal bodies before mitosis and at prophase the large microtubular (crystalline) roots disassemble as their component microtubules migrate to the future spindle poles. By prometaphase the crystalline roots have disappeared; the flagellar axonemes shorten and the two pairs of basal bodies (each consisting of one parental and one daughter basal body) separate so that each pair is distal to a spindle pole. By late prometaphase the pairs of basal bodies bear diminutive flagellar roots for the future daughter cells. The long flagellum of each daughter cell is derived from the parental basal bodies; thus, the basal body that produces a short flagellum in the parent produces a long flagellum in the daughter cell. We conclude that each basal body in these cells is inherently identical but that a first generation basal body generates a short flagellum and in succeeding generations it produces a long flagellum. At metaphase a fibrous band connecting the basal bodies appears and the roots and basal bodies reorient to their interphase configuration. By telophase the crystalline roots have begun to reform and the rootlet microtubules have assumed their interphase appearance by early cytokinesis.Abbreviations CR1, CR2 crystalline roots 1 and 2 - CT cytoplasmic tongue microtubules - DIC differential interference contrast light microscopy - H haptonema - HVEM high voltage transmission electron microscopy - IMF immunofluorescence microscopy - L left flagellum/basal body - M metaphase plate - MT microtubule - N nucleus - R right flagellum/basal body - R1, R2, R3 roots 1, 2, and 3 - TEM transmission electron microscopy  相似文献   

5.
A model of the cell cycle, incorporating a deterministic cell-size monitor and a probabilistic component, is investigated. Steady-state distributions for cell size and generation time are calculated and shown to be globally asymptotically stable. These distributions are used to calculate various statistical quantities, which are then compared to known experimental data. Finally, the results are compared to distributions calculated from a Monte-Carlo simulation of the model.  相似文献   

6.
7.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

8.
Spatial and numerical regulation of flagellar biosynthesis results in different flagellation patterns specific for each bacterial species. Campylobacter jejuni produces amphitrichous (bipolar) flagella to result in a single flagellum at both poles. These flagella confer swimming motility and a distinctive darting motility necessary for infection of humans to cause diarrheal disease and animals to promote commensalism. In addition to flagellation, symmetrical cell division is spatially regulated so that the divisome forms near the cellular midpoint. We have identified an unprecedented system for spatially regulating cell division in C. jejuni composed by FlhG, a regulator of flagellar number in polar flagellates, and components of amphitrichous flagella. Similar to its role in other polarly-flagellated bacteria, we found that FlhG regulates flagellar biosynthesis to limit poles of C. jejuni to one flagellum. Furthermore, we discovered that FlhG negatively influences the ability of FtsZ to initiate cell division. Through analysis of specific flagellar mutants, we discovered that components of the motor and switch complex of amphitrichous flagella are required with FlhG to specifically inhibit division at poles. Without FlhG or specific motor and switch complex proteins, cell division occurs more often at polar regions to form minicells. Our findings suggest a new understanding for the biological requirement of the amphitrichous flagellation pattern in bacteria that extend beyond motility, virulence, and colonization. We propose that amphitrichous bacteria such as Campylobacter species advantageously exploit placement of flagella at both poles to spatially regulate an FlhG-dependent mechanism to inhibit polar cell division, thereby encouraging symmetrical cell division to generate the greatest number of viable offspring. Furthermore, we found that other polarly-flagellated bacteria produce FlhG proteins that influence cell division, suggesting that FlhG and polar flagella may function together in a broad range of bacteria to spatially regulate division.  相似文献   

9.
Entamoeba histolytica: cell cycle and nuclear division   总被引:1,自引:0,他引:1  
The cell cycle of Entamoeba histolytica, the duration of its phases, and the details of the nuclear division stages are described in this paper. Trophozoites from clone L-6, strain HM1:IMSS, were synchronized by colchicine. Synchrony was observed immediately after treatment and cultures remained synchronous for at least three replicative cycles with synchrony indexes between 13 and 15 hr. The stages of nuclear division were studied by light and electron microscopy. Four stages of the nuclear division were defined: prophase, early anaphase, late anaphase, and telophase. No metaphase stage was observed by light or electron microscopy. One of the first events in the nuclear division was the presence of a bud close to the juxtanuclear body, which grew to a daughter nucleus. The karyosome and the nuclear membrane remained throughout the mitotic process. Bundles of intranuclear microtubules were observed forming a "V" from the center of the nucleus to one of the poles, and associated with them, 12 to 16 chromosomes-like structures appeared. The results of these studies strongly suggest that division of E. histolytica involved a pleuromitotic process which is carried out in about 120 min.  相似文献   

10.
Conjugation, a sexual stage in the life cycle of Tetrahymena, is marked by the pairing of two cells of opposite mating types. Pairing establishes cytoplasmic continuity between the two cells and initiates the complex of nuclear events involved in sexual exchange. After mixing cells of opposite mating types in nonnutrient medium, a 3-hr refractory period ensues before pairing begins.A wave of cell division occurs concurrently with the onset of pairing. However, although all cells pair, the population does not double. This indicates that some cells do not divide and yet are capable of pairing. Apparently division per se is not required for pairing but does occur in most of the cells.Autoradiographic analysis demonstrates that the cells that divide before pairing were at a stage in the cell cycle beyond the initiation of macronuclear replication at the time they were transferred to nonnutrient medium. Cells that did not divide were in G1 at the time of shift-down. Thus, neither replication nor division is required to be able to fuse. However, since fusion occurs only in G1 and most cells are not in G1 at the time of shift-down, a traverse of the cell cycle is required.Shift-down induces G1 arrest and preparations for the mating reaction. Mixing the cells induces a synchronous wave of division for cells beyond the G1S interface. Preparations for the mating reaction occur independently of but simultaneous with the preparations for cell division.  相似文献   

11.
12.
13.
The problem of regulation of cell division is essentially a problem of understanding regulation of transition from the resting state of a cell to the dividing state and vice versa. In malignancy the ability to revert back to a normal resting state is impaired. A model is presented which attempts to explain the control of the above transitions through control of uptake of essential nutrients by a transport-inhibitory protein. Experimental evidence in favour of the model is given.  相似文献   

14.
15.
The stochastic model of cell division formulated by Alt and Tyson is generalized to the case of imprecise binary fission. Closed-form expressions are derived for the generation-time distribution, the birth-size and division-size distributions, the beta curve, and the correlation coefficient of generation times of sister cells. The theoretical results are compared to observations of cell division statistics in a culture of fission yeast.  相似文献   

16.
We and others recently demonstrated that Drosophila melanogaster embryos arrest development and embryonic cells cease dividing when they are deprived of O2. To further characterize the behavior of these embryos in response to O2 deprivation and to define the O2-sensitive checkpoints in the cell cycle, embryos undergoing nuclear cycles 3-13 were subjected to O2 deprivation and examined by confocal microscopy under control, hypoxic, and reoxygenation conditions. In vivo, real-time analysis of embryos carrying green fluorescent protein-kinesin demonstrated that cells arrest at two major points of the cell cycle, either at the interphase (before DNA duplication) or at metaphase, depending on the cell cycle phase at which O2 deprivation was induced. Immunoblot analysis of embryos whose cell divisions are synchronized by inducible String (cdc25 homolog) demonstrated that cyclin B was degraded during low O2 conditions in interphase-arrested embryos but not in those arrested in metaphase. Embryos resumed cell cycle activity within ~20 min of reoxygenation, with very little apparent change in cell cycle kinetics. We conclude that there are specific points during the embryonic cell cycle that are sensitive to the O2 level in D. melanogaster. Given the fact that O2 deprivation also influences the growth and development of other species, we suggest that similar hypoxia-sensitive cell cycle checkpoints may also exist in mammalian cells.  相似文献   

17.
Aspergillus nidulans is a multicellular fungus being used to study developmental regulation and cell cycle regulation. Genetic and molecular mechanisms underlying both processes have been characterized. Two types of observations suggest that there is significant interaction between cell cycle and developmental regulatory mechanisms. First, A. nidulans development involves the formation of specialized cell types that contain different, but specific, numbers of nuclei that are differentially regulated for cell cycle progression. Second, mutations directly affecting nuclear division can have major affects on cell differentiation during development. In this essay we describe these interactions and point out potential mechanisms for the cross talk between morphogenesis and the cell cycle that are tractable for future experimental investigation.  相似文献   

18.
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.  相似文献   

19.
The intestinal parasite Giardia lamblia undergoes cell differentiations that entail entry into and departure from the replicative cell cycle. The pathophysiology of giardiasis depends directly upon the ability of the trophozoite form to replicate in the host upper small intestine. Thus, cell proliferation is tightly linked to disease. However, studies of cell cycle regulation in Giardia have been hampered by the inability to synchronise cultures. Here we report that Giardia isolates of the major human genotypes A and B can be synchronised using aphidicolin, a mycotoxin that reversibly inhibits replicative DNA polymerases in eukaryotic cells. Aphidicolin arrests Giardia trophozoites in the early DNA synthesis (S) phase of the cell cycle. We identified a set of cell cycle orthologues in the Giardia genome using bioinformatic analyses and showed that synchronised parasites express these genes in a cell cycle stage-specific manner. The synchronisation method also showed that during encystation, exit from the ordinary cell cycle occurs preferentially in G(2) and defines a restriction point for differentiation. Synchronisation opens up possibilities for further molecular and cell biological studies of chromosome replication, mitosis and segregation of the complex cytoskeleton in Giardia.  相似文献   

20.
Fertilization in Chlamydomonas reinhardtii is initiated when gametes of opposite mating types adhere to each other via adhesion molecules (agglutinins) on their flagella. Adhesion leads to loss of active agglutinins from the flagella and recruitment of new agglutinins from a pool associated with the cell body. We have been interested in determining the precise cellular location of the pool and learning more about the relationship between agglutinins in the two domains. In the studies reported here we describe methods for purification of mt+ cell body agglutinins by use of ammonium sulfate precipitation, chromatography (molecular sieve, ion exchange, and hydrophobic interaction), and sucrose gradient centrifugation. About 90% of the total agglutinins were associated with the cell body and the remainder were on the flagella. Cell body agglutinins were indistinguishable from mt+ flagellar agglutinins by SDS-PAGE, elution properties on a hydrophobic interaction column, and in sedimentation properties on sucrose gradients. The nonadhesiveness of cell bodies suggested that the cell body agglutinins would be intracellular, but our results are not consistent with this interpretation. We have demonstrated that brief trypsin treatment of deflagellated gametes destroyed all of the cell body agglutinins and, in addition, we showed that the cell body agglutinins were accessible to surface iodination. These results indicated that C. reinhardtii agglutinins have a novel cellular disposition: active agglutinins, representing approximately 10% of the total cellular agglutinins, are found only on the flagella, whereas the remaining 90% of these molecules are on the external surface of the cell body plasma membrane in a nonfunctional form. This segregation of cell adhesion molecules into distinct membrane domains before gametic interactions has been demonstrated in sperm of multicellular organisms and may be a common mechanism for sequestering these critical molecules until gametes are activated for fusion. In experiments in which surface-iodinated cell bodies were permitted to regenerate new flagella, we found that the agglutinins (as well as the 350,000 Mr, major flagellar membrane protein) on the newly regenerated flagella were iodinated. These results indicate that proteins destined for the flagella can reside on the external surface of the cell body plasma membrane and are recruited onto newly forming flagella as well as onto preexisting flagella during fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号