首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinical research suggests hormonal contraceptive use is associated with increased frequencies of HSV reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV type 1 (HSV-1) reactivation and CD8(+) T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8(+) T cell effector functions, including IFN-gamma production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-gamma production and lytic granule release by TG resident CD8(+) T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45(+) cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8(+) T cell responses and by a leukocyte-independent effect on infected neurons.  相似文献   

2.
Herpes simplex viruses (HSV) reactivate at rates proportional to the viral loads in latently infected ganglia. However, these rates vary substantially among infected animals. We assessed whether the numbers of HSV-specific CD8(+) T cells infiltrating latently infected ganglia also affect reactivation rates and contribute to their variability. Following corneal infection of mice with HSV type 2 (HSV-2), we quantified the latent viral loads in dissociated trigeminal ganglia by real-time PCR, the numbers of infiltrating CD8(+) T cells by flow cytometry, and the rates of reactivation by the detection of cell-free virus released from ganglion cells cultured in 96-well plates. The reactivation rates correlated directly with the latent viral loads (P = 0.001) but did so more strongly (P = 10(-7)) when cultures were depleted of CD8(+) T cells. Reactivation rates were reduced in a dose-dependent fashion by adding back ganglion CD8(+) T cells to the cultures (P = 0.003). We related the latent viral loads, numbers of CD8(+) T cells, and reactivation rates by mathematical equations. The rates of reactivation predicted from latent viral loads and numbers of infiltrating CD8(+) T cells in dissociated ganglia correlated with the observed rates of reactivation (P = 0.04). The reactivation of HSV-2 from ganglia ex vivo is determined both by the latent viral load and the number of infiltrating CD8(+) T cells.  相似文献   

3.
A neonatal rat dorsal root ganglion-derived neuronal culture system has been utilized to study herpes simplex virus (HSV) latency establishment, maintenance, and reactivation. We present our initial characterization of viral gene expression in neurons following infection with replication-defective HSV recombinants carrying beta-galactosidase and/or green fluorescent protein reporter genes under the control of lytic cycle- or latency-associated promoters. In this system lytic virus reporter promoter activity was detected in up to 58% of neurons 24 h after infection. Lytic cycle reporter promoters were shut down over time, and long-term survival of neurons harboring latent virus genomes was demonstrated. Latency-associated promoter-driven reporter gene expression was detected in neurons from early times postinfection and was stably maintained in up to 83% of neurons for at least 3 weeks. In latently infected cultures, silent lytic cycle promoters could be activated in up to 53% of neurons by nerve growth factor withdrawal or through inhibition of histone deacetylases by trichostatin A. We conclude that the use of recombinant viruses containing reporter genes, under the regulation of lytic and latency promoter control in neuronal cultures in which latency can be established and reactivation can be induced, is a potentially powerful system in which to study the molecular events that occur during HSV infection of neurons.  相似文献   

4.
5.
6.
7.
8.
The stress-induced host cell factors initiating the expression of the herpes simplex virus lytic cycle from the latent viral genome are not known. Previous studies have focused on the effect of specific viral proteins on reactivation, i.e., the production of detectable infectious virus. However, identification of the viral protein(s) through which host cell factors transduce entry into the lytic cycle and analysis of the promoter(s) of this (these) first protein(s) will provide clues to the identity of the stress-induced host cell factors important for reactivation. In this report, we present the first strategy developed for this type of analysis and use this strategy to test the established hypothesis that the herpes simplex virus ICP0 protein initiates reactivation from the latent state. To this end, ICP0 null and promoter mutants were analyzed for the abilities (i) to exit latency and produce lytic-phase viral proteins (initiate reactivation) and (ii) to produce infectious viral progeny (reactivate) in explant and in vivo. Infection conditions were manipulated so that approximately equal numbers of latent infections were established by the parental strains, the mutants, and their genomically restored counterparts, eliminating disparate latent pool sizes as a complicating factor. Following hyperthermic stress (HS), which induces reactivation in vivo, equivalent numbers of neurons exited latency (as evidenced by the expression of lytic-phase viral proteins) in ganglia latently infected with either the ICP0 null mutant dl1403 or the parental strain. In contrast, infectious virus was detected in the ganglia of mice latently infected with the parental strain but not with ICP0 null mutant dl1403 or FXE. These data demonstrate that the role of ICP0 in the process of reactivation is not as a component of the switch from latency to lytic-phase gene expression; rather, ICP0 is required after entry into the lytic cycle has occurred. Similar analyses were carried out with the DeltaTfi mutant, which contains a 350-bp deletion in the ICP0 promoter, and the genomically restored isolate, DeltaTfiR. The numbers of latently infected neurons exiting latency were not different for DeltaTfi and DeltaTfiR. However, DeltaTfi did not reactivate in vivo, whereas DeltaTfiR reactivated in approximately 38% of the mice. In addition, ICP0 was detected in DeltaTfiR-infected neurons exiting latency but was not detected in those neurons exiting latency infected with DeltaTfi. We conclude that while ICP0 is important and perhaps essential for infectious virus production during reactivation in vivo, this protein is not required and appears to play no major role in the initiation of reactivation in vivo.  相似文献   

9.
We recently demonstrated that CD8(+) T cells could block herpes simplex virus type 1 (HSV-1) reactivation from latency in ex vivo trigeminal ganglion (TG) cultures without destroying the infected neurons. Here we establish that CD8(+) T-cell prevention of HSV-1 reactivation from latency is mediated at least in part by gamma interferon (IFN-gamma). We demonstrate that IFN-gamma was produced in ex vivo cultures of dissociated latently infected TG by CD8(+) T cells that were present in the TG at the time of excision. Depletion of CD8(+) T cells or neutralization of IFN-gamma significantly enhanced the rate of HSV-1 reactivation from latency in TG cultures. When TG cultures were treated with acyclovir for 4 days to insure uniform latency, supplementation with recombinant IFN-gamma blocked HSV-1 reactivation in 80% of cultures when endogenous CD8(+) T cells were present and significantly reduced and delayed HSV-1 reactivation when CD8(+) T cells or CD45(+) cells were depleted from the TG cultures. The effectiveness of recombinant IFN-gamma in blocking HSV-1 reactivation was lost when its addition to TG cultures was delayed by more than 24 h after acyclovir removal. We propose that when the intrinsic ability of neurons to inhibit HSV-1 gene expression is compromised, HSV-specific CD8(+) T cells are rapidly mobilized to produce IFN-gamma and perhaps other antiviral cytokines that block the viral replication cycle and maintain the viral genome in a latent state.  相似文献   

10.
Chen SH  Yao HW  Huang WY  Hsu KS  Lei HY  Shiau AL  Chen SH 《Journal of virology》2006,80(24):12387-12392
For decades, numerous ex vivo studies have documented that latent herpes simplex virus (HSV) reactivates efficiently from ganglia, but rarely from the central nervous systems (CNS), of mice when assayed by mincing tissues before explant culture, despite the presence of viral genomes in both sites. Here we show that 88% of mouse brain stems reactivated latent virus when they were dissociated into cell suspensions before ex vivo explant culture. The efficient reactivation of HSV from the mouse CNS was demonstrated with more than one viral strain, viral serotype, and mouse strain, further indicating that the CNS can be an authentic latency site for HSV with the potential to cause recurrent disease.  相似文献   

11.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Herpes simplex virus (HSV) encephalitis was produced in mice from reactivation of latent virus. Two experimental models were used: the trigeminal model after corneal inoculation of HSV, and the hypoglossal model after tongue inoculation of HSV. In the trigeminal model, cyclophosphamide treatment induced reactivation of latent virus in ganglia but not in central nervous system tissue. Spread of the reactivated virus from ganglia to brain occurred only in mice deficient in anti-HSV antibody. In the hypoglossal model, sectioning of the hypoglossal nerve provoked chromatolysis in the corresponding central nervous system motor neurons and occasionally reactivated latent HSV in the brains of mice. These results suggest that HSV encephalitis can result from the spread of reactivated virus from ganglia to brain and also from in situ reactivation in brain.  相似文献   

20.
The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号