首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Iron(II) heme-mediated activation of the peroxide bond of artemisinins is thought to generate the radical oxygen species responsible for their antimalarial activity. We analyzed the role of ferrous iron in the cytotoxicity of artemisinins toward tumor cells. Iron(II)-glycine sulfate (Ferrosanol) and transferrin increased the cytotoxicity of free artesunate, artesunate microencapsulated in maltosyl-beta-cyclodextrin, and artemisinin toward CCRF-CEM leukemia and U373 astrocytoma cells 1.5- to 10.3-fold compared with that of artemisinins applied without iron. Growth inhibition by artesunate and ferrous iron correlated with induction of apoptosis. Cell cycle perturbations by artesunate and ferrous iron were not observed. Treatment of p53 wild-type TK6 and p53 mutated WTK1 lymphoblastic cells showed that mutational status of the tumor suppressor p53 did not influence sensitivity to artesunate. The effect of ferrous iron and transferrin was reversed by monoclonal antibody RVS10 against the transferrin receptor (TfR), which competes with transferrin for binding to TfR. CCRF-CEM and U373 cells expressed TfR in 95 and 48% of the cell population, respectively, whereas TfR expression in peripheral mononuclear blood cells of four healthy donors was confined to 0.4-1.3%. This indicates that artemisinins plus ferrous iron may affect tumor cells more than normal cells. The IC(50) values for a series of eight different artemisinin derivatives in 60 cell lines of the U.S. National Cancer Institute were correlated with the microarray mRNA expression of 12 genes involved in iron uptake and metabolism by Kendall's tau test to identify iron-responsive cellular factors enhancing the activity of artemisinins. This pointed to mitochondrial aconitase and ceruloplasmin (ferroxidase).  相似文献   

2.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

3.
Protein kinase activity in homogenates of control thyroid slices and those incubated with thyroid-stimulating hormone (TSH) and prostaglandin EI was assayed and correlated with changes in cyclic adenosine 3':5'-monophosphate (cAMP) concentrations and binding of [3H]cAMP. Both TSH and prostaglandin E1 (25 mug/ml) increased protein kinase activity and the activity ratio (expressed as activity - cAMP to activity plus cAMP). It is unlikely that such activation reflects effects of the increased cAMP liberated at the time of homogenization. Hormone-induced activation of protein kinase persisted even after the homogenate had been diluted so that its cAMP concentration would be insufficient to achieve maximal activation of the enzyme. In contrast to the previous results of J. D. Corbin, T. R. Soderling, and C. R. Park ((1973 J. Biol. Chem. 248, 1813) using adipose tissue, homogenization of thyroid tissue in 0.5 M NaCl and chromatography using Sephadex G-100 did not seem to stabilize dissociation of protein kinase into its receptor and catalytic subunits. However, increasing amounts of NaCl in the homogenizing buffer were associated with an increase in the cAMP independence of enzyme activity. Dilution of the homogenate did not change the protein kinase activity ratio whether the homogenizing buffer contained NcCl or not. Increasing concentrations of NaF inhibited protein kinase activity. Within 1 to 3 min of incubation of thyroid slices with TSH, protein kinase activity and the activity ratio were increased significantly. This correlated quite well with increased cAMP concentrations in the slices and inhibition of [3H]cAMP binding to the homogenates. Maximal activation of the enzyme was achieved by 10 min which corresponds to the time of maximal effect on cAMP concentrations. Activation of protein kinase was achieved by 0.125 milliunit/ml of TSH and maximal effects with 0.5 to 1.25 milliunits/ml. These amounts agree well with those required for other effects of TSH. Although larger amounts of TSH produced even greater increases in cAMP concentrations this was not always associated with augmented inhibition of [3H]cAMP binding. These results are compatible with the concept that the TSH-mediated increase in cAMP is associated with activation of protein kinase in the intact cell. They also suggest that not all of the intracellular cAMP is available for activation of protein kinase.  相似文献   

4.
Activity of the Ca2+/phospholipid-dependent protein kinase C has been shown to increase during differentiation of the human promyelocytic leukemia cell line HL-60 by dimethyl sulfoxide and retinoic acid (Zylber-Katz, E., and Glazer, R. I. (1985) Cancer Res. 45, 5159-5164). Antipeptide antibodies were prepared that specifically recognize the alpha, beta, and gamma isozymes of protein kinase C in rat brain cytosol and HL-60 cell extracts. The three isozymes do not share a common tissue distribution pattern. The gamma enzyme is abundant in brain but a relatively minor component in HL-60 cells; the opposite is true for the alpha enzyme. All three isozymes increase at least 2-fold in abundance in HL-60 cells exposed to 1.2% dimethyl sulfoxide for 48 h. The increase in abundance of the alpha and beta isoforms reaches 7- and 5-fold, respectively, by 96 h without further increase in the abundance of the gamma isozyme. Similarly, all three isozymes increase at least 1.5-fold in abundance after 48 h and 3-fold after 96 h with 1 microM retinoic acid. No further increase in the abundance of any of the isozymes is seen between 96 and 144 h of incubation with retinoic acid. The increase in protein kinase C activity is not limited to the cytosolic forms of the enzyme; a parallel increase in membrane-associated protein kinase C is also observed during differentiation. Approximately 10% of total protein kinase C activity is membrane-associated in both control and differentiating cells. These studies provide the first immunochemical evidence that all three protein kinase C isozymes increase during HL-60 cell differentiation, and they suggest that the increase in the isozyme levels may be coordinately regulated.  相似文献   

5.
We studied the involvement of protein kinase C in the induction of spermidine/spermine N1-acetyltransferase, a rate-limiting enzyme of polyamine degradation, in bovine lymphocytes. When phytohemagglutinin (PHA) and H-7, a protein kinase inhibitor, were added simultaneously to lymphocyte cultures, the elevation caused by PHA of spermidine/spermine N1-acetyltransferase activity at 24 h after administration was reduced. In cells treated with a lower concentration of PHA, the acetyltransferase activity was enhanced with 12-o-tetradecanoyl phorbol-13-acetate (TPA), an activator of protein kinase C, and reached the level of cells with a higher concentration of PHA. PHA did not cause maximum induction of the enzyme in cells treated with 160 ng/ml TPA. The induction of this acetyltransferase with PHA is probably mediated by protein kinase C.  相似文献   

6.
To study the activity of the epidermal growth factor (EGF) receptor during EGF-directed internalization, liver epithelial cells were exposed to EGF at 37 degrees C for various periods of time, washed, and homogenized at 0 degrees C. EGF receptor autophosphorylation was assessed in homogenates using [gamma-32P]ATP. Autophosphorylation was stimulated 3- to 6-fold in homogenates of cells incubated with EGF (100 ng/ml) for 15 min but was at or below basal levels in homogenates of cells treated with EGF for 2.5-5 min. This was surprising because immunoblotting revealed that EGF receptor phosphotyrosine (P-Tyr) content in intact cells was near maximal from 30 s to 5 min after EGF treatment. Excess EGF (1 microgram/ml), added after homogenization but prior to the assay, increased autophosphorylation in homogenates of cells that had not been treated with EGF, but failed to increase activity in homogenates of cells treated with EGF in culture for 2.5-5 min. Suppression of tyrosine phosphorylation of an exogenous kinase substrate was also observed at times paralleling the suppression of EGF receptor autophosphorylation. The transient suppression of receptor autophosphorylation in the cell-free assay was not explained by persistent occupation of autophosphorylation sites by phosphate added in the intact cells. The sites were greater than 80% dephosphorylated during the homogenization. Additionally phosphatase inhibition that prevented the normal loss of EGF receptor P-Tyr in intact cells at 15 min did not affect the pattern of early (2.5-5 min) suppression and later (15 min) stimulation of autophosphorylation measured in the cell-free assay. The suppression was not explained by activation of protein kinase C in that depletion of greater than 95% of cellular protein kinase C activity by an 18-h incubation of cells with 10 microM 12-O-tetradecanoylphorbol 13-acetate (TPA) did not affect the early suppression of autophosphorylation in EGF-treated cells. Moreover, under the conditions tested, activation of protein kinase C by short-term treatment (0.5-10 min) with TPA or angiotensin II did not appreciably alter subsequent autophosphorylation in the cell-free assay. In contrast, a 30 degrees C preincubation of homogenates from cells with suppressed EGF receptor autophosphorylation led to the recovery of the ability of EGF to stimulate EGF receptor autophosphorylation. These results suggest that a rapid reversible protein kinase C-independent process prevents detection of EGF receptor kinase activity during an early phase of EGF-dependent receptor internalization.  相似文献   

7.
Previous studies in this laboratory have shown that insulin treatment of Xenopus oocytes leads to an increase in phosphorylation of ribosomal protein S6. To investigate the mechanism of this increase, S6 kinase activity was measured in lysates of oocytes exposed to insulin. Insulin caused a rapid 4- to 6-fold increase in S6 kinase activity, which was maximal by 20 min and which could be reversed by removal of insulin prior to homogenization. Dose-response curves showed a detectable increase in specific activity at 1 nM insulin with a maximal effect at 100 nM. Treatment of oocytes with puromycin did not prevent this increase in S6 kinase activity, suggesting activation rather than synthesis of the enzyme. DEAE-Sephacel chromatography of extracts from insulin-treated oocytes revealed two peaks of S6 kinase activity, and the specific activity of the peak eluting at 300 nM NaCl was increased 3-fold in oocytes treated with insulin. The same peak of S6 kinase activity was increased 40% within 10 min in oocytes injected with highly purified insulin-receptor kinase. These results indicate that the insulin-dependent increase in S6 phosphorylation is due, at least in part, to activation of an S6 protein kinase, and this activation may result from the action of the insulin receptor at an intracellular location.  相似文献   

8.
The involvement of protein kinase C in differentiation of rat adipocyte precursor cells in serum-free culture was evaluated by using various protein kinase inhibitors. Induction of adipose conversion, which was maximal after 10 days of culture in the presence of 5 μg/ml insulin, 10 μg/ml transferrin, and 200 pM triiodothyronine, was inhibited by the addition of protein kinase C inhibitors, H-7 and staurosporine, in a dose dependent fashion with the maximal effect at 10 μM and 10 nM, respectively. Inhibition of adipocyte differentiation by 12-O-tetradecanoylphorbol 13-acetate (10−8M), an activator of protein kinase C, was reversed by a concomitant addition of either 10 μM H-7 or 10 nM staurosporine. HA1004, a potent inhibitor of cAMP- and cGMP-dependent protein kinases, with minimal inhibitory activity on protein kinase C, did not affect adipose conversion. Furthermore, H-89, another isoquinoline derivative with a selective inhibitory action on cAMP-dependent protein kinase, was without effect on cellular differentiation. These results indicate that the potentiation of adipogenesis by H-7 and staurosporine is mediated by suppression of protein kinase C and that protein kinase C is involved in adipocyte differentiation in an inhibitory fashion.  相似文献   

9.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   

10.
Deoxycytidine kinase specific activity was high in human peripheral lymphocytes and increased less than 2-fold when the lymphocytes were stimulated by phytohemagglutinin A. Ion-exchange chromatography showed the same profile of deoxycytidine kinase activity in resting and proliferating cells. This enzyme could also efficiently phosphorylate deoxyadenosine and deoxyguanosine. In contrast, the thymidine kinase activity was very low in resting peripheral lymphocytes and increased more than 40-fold upon stimulation. Similar relative changes in the activities of the two enzymes were observed in human T-lymphoblast cells (CCRF-CEM) separated by centrifugal elutriation into cells of different cell cycle phases. The ratio of deoxycytidine to thymidine kinase activities is 20:1 in extracts from resting human lymphocytes and 1:2 in PHA-stimulated cells. This drastic change in deoxyribonucleoside phosphorylating activities during the cell cycle in human lymphocytes is of importance for studies on unscheduled DNA synthesis, for the design of therapies to interfere with viral DNA metabolism, and for a correct interpretation of the compartmentation effects observed in DNA precursor metabolism.  相似文献   

11.
12.
13.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

14.
Prior studies demonstrated that ceramide was phosphorylated by a novel Ca(2+)-dependent kinase distinct from diacylglycerol (DG) kinase in human myelogenous leukemia (HL-60) cells (Kolesnick, R. N., and Hemer, M. R. (1990) J. Biol. Chem. 265, 10900-10904). The present studies were initiated to determine whether mammalian DG kinase purified to homogeneity possessed phosphotransferase activity toward ceramide. A high molecular weight rat brain DG kinase demonstrated Mg(2+)-(but not Ca(2+)-) dependent DG kinase activity and did not phosphorylate ceramide in the presence of either cation. In contrast, ceramide served as a competitive inhibitor with an inhibition constant (Ki) 2-6-fold greater than the Km for DG. Inhibition was noncompetitive with respect to ATP and Mg2+. A cell-permeable ceramide, N-octanoyl sphingosine (C8-cer), was used to study effects of ceramide on DG kinase in intact HL-60 cells. C8-cer induced dose- and time-dependent increases in cellular DG levels. As little as 1 microM C8-cer increased DG from a basal level of 103 to 177 pmol.10(6) cells-1, and a maximal 2.9-fold elevation to 292 pmol.10(6) cells-1 occurred with 10 microM C8-cer. DG elevation was detected after 1 min, maximal by 7.5 min, and sustained for 30 min. The DG elevation was accompanied by a reduction in 32P incorporation in phosphatidic acid in cells short term-labeled with [32P]orthophosphoric acid, consistent with inhibition of DG kinase. In contrast, a similar elevation in the DG level induced by exogenous phospholipase C increased 32P incorporation into phosphatidic acid. C8-cer was not metabolized to sphingomyelin, indicating that DG was not generated through the phosphatidylcholine:ceramide cholinephosphotransferase reaction. DG elevation after C8-cer or phospholipase C treatment was sufficient to redistribute protein kinase C from cytosol to membrane. These findings provide evidence that ceramide may serve as a competitive inhibitor of DG kinase.  相似文献   

15.
The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent and dependent on the concentrations of choline kinase (K(m) = 27 microg/ml) and ATP (K(m) = 15 microM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSSQRRHS (V5max/K(m) = 17.5 mm(-1) micromol min(-1) mg(-1)) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway, whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Although the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHSLTRQ) containing Ser30 was a substrate (V(max)/K(m) = 3.0 mm(-1) micromol min(-1) mg(-1)) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C.  相似文献   

16.
Thyrotropin-releasing hormone (TRH) affects hormone secretion and synthesis in GH4C1 cells, a clonal strain of rat pituitary cells. Recent evidence suggests that the intracellular mediators, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, which are generated as a result of TRH-induced hydrolysis of the polyphosphatidylinositols, may be responsible for some of the physiological events regulated by TRH. Because diacylglycerol is an activator of protein kinase C, we have examined a role for this enzyme in TRH action. The subcellular distribution of protein kinase C in control and TRH-treated cells was determined by measuring both enzyme activity and 12,13-[3H]phorbol dibutyrate binding in the cytosol and by measuring enzyme activity in the particulate fraction. Acute exposure of GH4C1 cells to TRH resulted in a decrease of cytosolic protein kinase C, and an increase in the level of the enzyme associated with the particulate fraction. The redistribution of protein kinase C induced by TRH was dose- and time-dependent, with maximal effects occurring within the first minute of TRH treatment. Analogs of TRH which do not bind to the TRH receptor did not induce redistribution of protein kinase C, while the active analog, methyl-TRH, did promote redistribution. Treatment of GH4C1 cells with phorbol myristate acetate also resulted in a shift in protein kinase C distribution, although the response was slower than that produced by TRH. TRH-induced redistribution of protein kinase C implies translocation of the enzyme from a soluble to a membrane-associated form. Because protein kinase C requires a lipid environment for activity, association with the membrane fraction of the cell suggests activation of the enzyme; thus, protein kinase C may play a role in some of the actions of TRH on GH4C1 cells.  相似文献   

17.
The effect of changes in iron availability and induction of differentiation on transferrin receptor expression and ferritin levels has been examined in the promonocytic cell line U937. Addition of iron (as 200 micrograms/ml saturated transferrin) or retinoic acid (1 microM) both caused approx. 70% reduction in the average number of surface transferrin receptors, while the iron chelator desferrioxamine caused an 84% increase. Comparable changes also occurred in the levels of transferrin receptor mRNA. Neither iron nor retinoic acid significantly altered the half-life of transferrin receptor mRNA in the presence of actinomycin D (approx. 75 min) but a 10-fold increase in stability occurred in the presence of desferrioxamine. Iron and retinoic acid both caused an increase in intracellular ferritin levels (approx. 4-and 3-fold, respectively), while desferrioxamine reduced ferritin levels by approx. two-thirds. The effect of iron and retinoic acid added together did not differ greatly from that of each agent alone. None of the treatments greatly affected levels of L-ferritin mRNA. Virtually no H-ferritin mRNA was detected in U937 cells. These results show that changes in ferritin and transferrin receptor caused by treatment with retinoic acid are similar to those induced by excess iron, and suggest that changes in these proteins during cell differentiation are due to redistribution of intracellular iron into the regulatory pool(s), rather than to iron-independent mechanisms.  相似文献   

18.
Treatment of human promyelocytic leukemia cells (HL-60 cells) with 12-O-tetradecanoylphorbol 13-acetate (TPA) results in terminal differentiation of the cells to macrophage-like cells. Treatment of the cells with TPA induced marked enhancement of the phosphorylation of 28- and 67-kDa proteins and a decrease in that of a 75-kDa protein. When the cells were treated with diacylglycerol, i.e. 50 micrograms/ml 1-oleoyl-2-acetylglycerol (OAG), similar changes in the phosphorylation of 28-, 67-, and 75-kDa proteins were likewise observed, indicating that OAG actually stimulates protein kinase C in intact HL-60 cells. OAG (1-100 micrograms/ml), which we used, activated partially purified mouse brain protein kinase C in a concentration-dependent manner. Treatment of HL-60 cells with 10 nM TPA for 48 h caused an increase by about 8-fold in cellular acid phosphatase activity. Although a significant increase in acid phosphatase activity was induced by OAG, the effect was scant compared to that of TPA (less than 7% that of TPA). After 48-h exposure to 10 nM TPA, about 95% of the HL-60 cells adhered to culture dishes. On the contrary, treatment of the cells either with OAG (2-100 micrograms/ml) or phospholipase C failed to induce HL-60 cell adhesion. Ca2+ ionophore A23187 failed to act synergistically with OAG. In addition, hourly or bi-hourly cumulative addition of OAG for 24 h also proved ineffective to induce HL-60 cell adhesion. Our present results do not imply that protein kinase C activation is nonessential for TPA-induced HL-60 cell differentiation, but do demonstrate that protein kinase C activation is not the sole event sufficient to induce HL-60 cell differentiation by means of this agent.  相似文献   

19.
Uptake of iron from transferrin by isolated hepatocytes   总被引:3,自引:0,他引:3  
Isolated rat hepatocytes containing 0.56-1.79 micrograms iron/10(6) cells and with an intracellular ATP concentration of 3-4 mM, accumulate iron from transferrin linearly with time for at least 3 h. At 37 degrees C the rate of uptake amounts to 0.3-0.7 pmol/mg cell protein per min. The uptake reaches a saturation level of 21-40 pmol/mg cell protein per h at 2.2 microM iron. At 5 degrees C the uptake does not increase over the time of incubation. Uptake of iron, but not binding of transferrin is increased 4-5-fold at oxygen concentrations 10-20 microM. At oxygen concentrations beyond these limits iron uptake is decreased. Iron taken up at low oxygen concentrations can be chelated by bathophenanthroline and bathophenanthroline disulphonate , but only if the chelators are present during the uptake experiments. The results suggest that iron uptake from transferrin by hepatocytes in suspension involves reductive removal of iron.  相似文献   

20.
Insulin treatment stimulated the activity of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) in both cytosolic and membrane fractions of BC3H-1 myocytes. Within 60 s of insulin treatment, membrane protein kinase C activity increased 2-fold, diminished toward control levels transiently, and then increased 2-fold again after 15 min. Cytosolic protein kinase C activity increased more gradually and steadily up to 80% over a 20-min period. Increases in protein kinase C activity were dose-dependent and were not simply a result of translocation of cytosolic enzyme (although this may have occurred), as total activity was also increased. The increase in protein kinase C activity was not inhibited by cycloheximide (which also increased protein kinase C activity and 2-deoxyglucose transport) and was still evident following anion exchange chromatography. The insulin effect was decidedly different from those of 12-O-tetradecanoylphorbol-13-acetate and phenylephrine using histone III-S as substrate. Phenylephrine decreased cytosolic protein kinase C activity while increasing membrane activity; 12-O-tetradecanoylphorbol-13-acetate only decreased cytosolic protein kinase C activity. The early insulin-induced increases in membrane protein kinase C activity may be related to increased diacylglycerol generation from de novo phosphatidic acid synthesis, as there were rapid increases in [3H]glycerol incorporation into diacylglycerol, and transient increases in phospholipid hydrolysis, as there were transient rapid increases in [3H]diacylglycerol in cells prelabeled with [3H]arachidonate. Later, sustained increases in membrane and cytosolic protein kinase C activity may reflect the continuous activation of de novo phospholipid synthesis, as there were associated increases in [3H]glycerol incorporation into diacylglycerol at later, as well as very early time points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号