首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The ribonuclease P database.   总被引:6,自引:4,他引:2       下载免费PDF全文
Ribonuclease P is responsible for the 5'-maturation of tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria the RNA subunit alone is catalytically active in vitro , i.e., it is a ribozyme. The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models, and accessory information, available via the World Wide Web (http: //www.mbio.ncsu.edu/RNaseP/home.html ).  相似文献   

2.
Ribonuclease P is responsible for the removal of leader sequences from tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria the RNA subunit alone is catalytically active in vitro, i.e. it is a ribozyme.The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models, and accessory information, available via the World Wide Web.  相似文献   

3.
The Ribonuclease P Database.   总被引:1,自引:0,他引:1       下载免费PDF全文
Ribonuclease P is the endoribonuclease responsible for the removal of leader sequences from tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria the RNA alone is capable of pre-tRNA processing in vitro, i.e. it is a catalytic RNA. The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models and accessory information, in the form of a hypertext document available via the Worldwide Web.  相似文献   

4.
Ribonuclease P is the endonuclease that removes the leader fragments from the 5'-ends of precursor tRNAs. The enzyme isolated from eubacteria contains a catalytic RNA subunit. RNAs also copurify with eukaryotic RNase P, although catalysis by those RNAs has not been demonstrated. This paper reports the isolation and characterization of ribonuclease P from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Archaebacteria are a primary evolutionary lineage, distinct from both eukaryotes and eubacteria. Ribonuclease P of S. solfataricus has reaction component requirements and a Km for substrate tRNA (2.5 X 10(-7) M) that are roughly similar to those reported for eubacterial and eukaryotic ribonuclease P. The temperature optimum for the reaction is 77 degrees C, reflecting the thermophilic character of the organism. The enzyme activity is not affected by treatment with micrococcal nuclease, suggesting that there is no RNA subunit or that it is protected from nuclease action. The density of the enzyme in cesium sulfate equilibrium density gradients is 1.27 g/ml, which is similar to that of protein. However, several RNAs between 200 and 400 nucleotides in size copurify with the enzyme activity on the density gradients, and one of them remains after micrococcal nuclease treatment. These properties of the S. solfataricus enzyme are compared with those of ribonuclease P from eukaryotes and eubacteria.  相似文献   

5.
6.
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.  相似文献   

7.
Folding of a universal ribozyme: the ribonuclease P RNA   总被引:1,自引:0,他引:1  
Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.  相似文献   

8.
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.  相似文献   

9.
The varieties of ribonuclease P.   总被引:13,自引:0,他引:13  
Ribonuclease P is a ribozyme involved in tRNA processing that is present in all cells and organelles that synthesize tRNA. Most of our understanding of ribonuclease P derives from studies of the bacterial enzyme. This enzyme has been characterized biochemically and a secondary structure for the RNA subunit has been proposed. Isolation and characterization of ribonuclease P from diverse Archaea and Eukarya are now modifying and adding to our model of this unusual enzyme. The latter instances of RNase P differ from the bacterial version, but similarities are emerging.  相似文献   

10.
Ribonuclease P (RNase P) is a key enzyme involved in tRNA biosynthesis. It catalyses the endonucleolytic cleavage of nearly all tRNA precursors to produce 5-end matured tRNA. RNase P activity has been found in all organisms examined, from bacteria to mammals. Eubacterial RNase P RNA is the only known RNA enzyme which functionsin trans in nature. Similar behaviour has not been demonstrated in RNase P enzymes examined from archaebacteria or eukaryotes. Characterisation of RNase P enzymes from more diverse eukaryotic species, including the slime moldDictyostelium discoideum, is useful for comparative analysis of the structure and function of eukaryotic RNase P.Abbreviations RNase P ribonuclease P - MN micrococcal nuclease  相似文献   

11.
Ribonuclease P (RNase P) is a Mg2+-dependent endoribonuclease responsible for the 5′-maturation of transfer RNAs. It is a ribonucleoprotein complex containing an essential RNA and a varying number of protein subunits depending on the source: at least one, four and nine in Bacteria, Archaea and Eukarya, respectively. Since bacterial RNase P is required for viability and differs in structure/subunit composition from its eukaryal counterpart, it is a potential antibacterial target. To elucidate the basis for our previous finding that the hexa-arginine derivative of neomycin B is 500-fold more potent than neomycin B in inhibiting bacterial RNase P, we synthesized hexa-guanidinium and -lysyl conjugates of neomycin B and compared their inhibitory potential. Our studies indicate that side-chain length, flexibility and composition cumulatively account for the inhibitory potency of the aminoglycoside-arginine conjugates (AACs). We also demonstrate that AACs interfere with RNase P function by displacing Mg2+ ions. Moreover, our finding that an AAC can discriminate between a bacterial and archaeal (an experimental surrogate for eukaryal) RNase P holoenzyme lends promise to the design of aminoglycoside conjugates as selective inhibitors of bacterial RNase P, especially once the structural differences in RNase P from the three domains of life have been established.  相似文献   

12.
The Ribonuclease P database.   总被引:4,自引:0,他引:4       下载免费PDF全文
The Ribonuclease P Sequence database is a compilation of RNase P sequences, sequence alignments, secondary structures, three-dimensional models, and accessory information. In its initial form, the database contains information on RNase P RNA in bacteria and archaea, and RNase P protein in bacteria. The sequences themselves are presented phylogenetically ordered and aligned. The database also contains secondary structures of bacterial and archaeal RNAs, including specially annotated 'reference' secondary structures of Escherichia coli and Bacillus subtilis RNase P RNAs, a minimum phylogenetic consensus structure, and coordinates for models of three-dimensional structure.  相似文献   

13.
The effect of macrolide antibiotic spiramycin on RNase P holoenzyme and M1 RNA from Escherichia coli was investigated. Ribonuclease P (RNase P) is a ribozyme that is responsible for the maturation of 5' termini of tRNA molecules. Spiramycin revealed a dose-dependent activation on pre-tRNA cleavage by E. coli RNase P holoenzyme and M1 RNA. The K s and V max, as well as the K s(app) and V max(app) values of RNase P holoenzyme and M1 RNA in the presence or absence of spiramycin, were calculated from primary and secondary kinetic plots. It was found that the activity status of RNase P holoenzyme and M1 RNA is improved by the presence of spiramycin 18- and 12-fold, respectively. Primer extension analysis revealed that spiramycin induces a conformational change of the P10/11 structural element of M1 RNA, which is involved in substrate recognition.  相似文献   

14.
Ribonuclease HII from hyperthermophile Thermococcus kodakaraensis (Tk-RNase HII) is a robust monomeric protein under kinetic control, which possesses some proline residues at the N-terminal of alpha-helices. Proline residue at the N-terminal of an alpha-helix is thought to stabilize a protein. In this work, the thermostability and folding kinetics of Tk-RNase HII were measured for mutant proteins in which a proline residue is introduced (Xaa to Pro) or removed (Pro to Ala) at the N-terminal of alpha-helices. In the folding experiments, the mutant proteins examined exhibit little influence on the remarkably slow unfolding of Tk-RNase HII. In contrast, E111P and K199P exhibit some thermostabilization, whereas P46A, P70A and P174A have some thermodestabilization. E111P/K199P and P46A/P70A double mutations cause cumulative changes in stability. We conclude that the proline effect on protein thermostability is observed in a hyperthermophilic protein, but each proline residue at the N-terminal of an alpha-helix slightly contributes to the thermostability. The present results also mean that even a natural hyperthermophilic protein can acquire improved thermostability.  相似文献   

15.
Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5-phosphate and 3-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast,Saccharomyces cerevisiae.Abbreviations LRI long range interaction - mt mitochondrial - MRP mitochondrial RNA processing - NME nuclear mitochondrial endonuclease - POP processing of precursor - RNase ribonuclease - SNM suppressor of NME - RNP ribonucleoprotein  相似文献   

16.
Ribonuclease (RNase) P is a site‐specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix‐loop‐helix protein‐binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 Å. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.  相似文献   

17.
Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.  相似文献   

18.
Ribonuclease P (RNase P) catalyzes the removal of 5′ leaders of tRNA precursors and its central catalytic RNA subunit is highly conserved across all domains of life. In eukaryotes, RNase P and RNase MRP, a closely related ribonucleoprotein enzyme, share several of the same protein subunits, contain a similar catalytic RNA core, and exhibit structural features that do not exist in their bacterial or archaeal counterparts. A unique feature of eukaryotic RNase P/MRP is the presence of two relatively long and unpaired internal loops within the P3 region of their RNA subunit bound by a heterodimeric protein complex, Rpp20/Rpp25. Here we present a crystal structure of the human Rpp20/Rpp25 heterodimer and we propose, using comparative structural analyses, that the evolutionary divergence of the single-stranded and helical nucleic acid binding specificities of eukaryotic Rpp20/Rpp25 and their related archaeal Alba chromatin protein dimers, respectively, originate primarily from quaternary level differences observed in their heterodimerization interface. Our work provides structural insights into how the archaeal Alba protein scaffold was adapted evolutionarily for incorporation into several functionally-independent eukaryotic ribonucleoprotein complexes.  相似文献   

19.
20.
Smith JK  Hsieh J  Fierke CA 《Biopolymers》2007,87(5-6):329-338
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号