首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular packing arrangement within collagen fibrils has a significant effect on the tensile properties of tissues. To date, most studies have focused on homotypic fibrils composed of type I collagen. This study investigates the packing of type I/III collagen molecules in heterotypic fibrils of colonic submucosa using a combination of X-ray diffraction data, molecular model building, and simulated X-ray diffraction fibre diagrams. A model comprising a 70-nm-diameter D- (approximately 65 nm) axial periodic structure containing type I and type III collagen chains was constructed from amino acid scattering factors organised in a liquid-like lateral packing arrangement simulated using a classical Lennard-Jones potential. The models that gave the most accurate correspondence with diffraction data revealed that the structure of the fibril involves liquid-like lateral packing combined with a constant helical inclination angle for molecules throughout the fibril. Combinations of type I:type III scattering factors in a ratio of 4:1 gave a reasonable correspondence with the meridional diffraction series. The attenuation of the meridional intensities may be explained by a blurring of the electron density profile of the D period caused by nonspecific or random interactions between collagen types I and III in the heterotypic fibril.  相似文献   

2.
We have compared the axial structures of negatively stained heterotypic, type II collagen-containing fibrils with computer-generated staining patterns. Theoretical negative-staining patterns were created based upon the "bulkiness" of the individual amino acid side-chains in the primary sequence and the D-staggered arrangement of the triple-helices. The theoretical staining pattern of type II collagen was compared and cross-correlated with the experimental staining pattern of both reconstituted type II collagen fibrils, and fibrils isolated from adult and foetal cartilage and vitreous humour. The isolated fibrils differ markedly in both diameter and composition. Correlations were significantly improved when a degree of theoretical hydroxylysine glycosylation was applied, showing for the first time that this type of glycosylation influences the negative-staining pattern of collagen fibrils. Increased correlations were obtained when contributions from types V/XI and IX collagen were included in the simulation model. The N-propeptide of collagen type V/XI and the NC2 domain of type IX collagen both contribute to prominent stain-excluding peaks in the gap region. With decreasing fibril diameter, an increase of these two peaks was observed. Simulations of the fibril-derived staining patterns with theoretical patterns composed of proportions of types II, V/XI and IX collagen confirmed that the thinnest fibrils (i.e. vitreous humour collagen fibrils) have the highest minor collagen content. Comparison of the staining patterns showed that the organisation of collagen molecules within vitreous humour and cartilage fibrils is identical. The simulation model for vitreous humour, however, did not account for all stain-excluding mass observed in the staining pattern; this additional mass may be accounted for by collagen-associated macromolecules.  相似文献   

3.
Collagen monomers, oligomers, and fibrillar structures were isolated from chick tendons at various stages of development and studied by rotary shadowing. Monomers of Type I collagen, solubilized in 0.15 M NaCl solutions, were mostly present as collagen, pN-collagen, and pC-collagen with few procollagen molecules. They did not form polymers, nor were they associated with a carrier. Dimers of fibrillar collagen molecules were arranged in a 4-D stagger, suggesting that this was the preferred molecular interaction for the initiation of collagen fibrillogenesis. Type XII collagen molecules were mostly free, but some were attached by their central globular domain to one end of free fibrillar collagen molecules. Tenascin and Type VI collagen were also identified. The fibril populations consisted of collagen and beaded structures. These fibrils consisted of beads (globular domains) about 23 nm in diameter, separated by a period about 27 nm in length. Beads were linked by filamentous structures. These beaded fibrils probably represent the microfibrils of elastin.  相似文献   

4.
Cartilage contains mixed fibrils of collagen types II, IX, and XI   总被引:24,自引:7,他引:24       下载免费PDF全文
The distribution of collagen XI in fibril fragments from 17-d chick embryo sternal cartilage was determined by immunoelectron microscopy using specific polyclonal antibodies. The protein was distributed throughout the fibril fragments but was antigenically masked due to the tight packing of collagen molecules and could be identified only at sites where the fibril structure was partially disrupted. Collagens II and IX were also distributed uniformly along fibrils but, in contrast to collagen XI, were accessible to the antibodies in intact fibrils. Therefore, cartilage fibrils are heterotypically assembled from collagens II, IX, and XI. This implies that collagen XI is an integral component of the cartilage fibrillar network and homogeneously distributed throughout the tissue. This was confirmed by immunofluorescence.  相似文献   

5.
Type I collagen fibrillogenesis in vitro has been studied by laser light scattering, and the results indicate that initiation of aggregation involves at least two steps. Step I of aggregation involves no change in the intensity of scattered light at an angle of 90° and is accompanied by a decrease in the diffusion coefficient. Step II is characterized by an increased intensity of scattered light and decreased diffusion coefficients. Theoretical calculations using the Stokes-Einstein equation for the translational diffusion coefficient and the Perrin equation for the frictional coefficient of a prolate ellipsoid indicate that the step I aggregates are 4D staggered linear dimers and trimers 570 and 845 nm long, whereas step II aggregates are greater than 950 nm in length. These dimensions are similar to those previously reported based on physicochemical measurements and electron microscopy. It is proposed that the rate and extent of fibrillogenesis in vitro is controlled by the concentration of the linear aggregates and that the effects of temperature and collagen concentration on fibrillogenesis previously observed are qualitatively explained in terms of their effects on the concentration of these aggregates.  相似文献   

6.
It has been suggested that dermal collagen fibrils with 67-nm periodicity consist of hybrids of type I and type III collagens. This is based on the assumption that all these banded fibrils are coated with type III collagen regardless of their diameter. However, conclusive evidence for this form of hybridization is lacking. In order to clarify this problem dermal collagen fibrils were disrupted into microfibrils using 8 M urea. Single and double indirect immunoelectron microscopy showed type III collagen at the periphery of intact collagen fibrils but no labeling with type I collagen antibodies, suggesting that the epitopes for this collagen were masked. Disrupted collagen fibrils revealed type I collagen throughout the fibril except for the periphery which was coated with type III collagen. Almost no type III collagen was noted in the interior of the collagen fibrils. Since type III collagen is present only at the periphery it suggests that this collagen has a different role than type I collagen and may have a regulatory function in fibrillogenesis.  相似文献   

7.
A characterization of the factors that control collagen fibril formation is critical for an understanding of tissue organization and the mechanisms that lead to fibrosis. SPARC (secreted protein acidic and rich in cysteine) is a counter-adhesive protein that binds collagens. Herein we show that collagen fibrils in SPARC-null skin from mice 1 month of age were inefficient in fibril aggregation and accumulated in the diameter range of 60-70 nm, a proposed intermediate in collagen fibril growth. In vitro, procollagen I produced by SPARC-null dermal fibroblasts demonstrated an initial preferential association with cell layers, in comparison to that produced by wild-type fibroblasts. However, the collagen I produced by SPARC-null cells was not efficiently incorporated into detergent-insoluble fractions. Coincident with an initial increase in cell association, greater amounts of total collagen I were present as processed forms in SPARC-null versus wild-type cells. Addition of recombinant SPARC reversed collagen I association with cell layers and decreased the processing of procollagen I in SPARC-null cells. Although collagen fibers formed on the surface of SPARC-null fibroblasts earlier than those on wild-type cells, fibers on SPARC-null fibroblasts did not persist. We conclude that SPARC mediates the association of procollagen I with cells, as well as its processing and incorporation into the extracellular matrix.  相似文献   

8.
Normal type I collagen is a heterotrimer of two α1(I) and one α2(I) chains, but various genetic and environmental factors result in synthesis of homotrimers that consist of three α1(I) chains. The homotrimers completely replace the heterotrimers only in rare recessive disorders. In the general population, they may compose just a small fraction of type I collagen. Nevertheless, they may play a significant role in pathology; for example, synthesis of 10-15% homotrimers due to a polymorphism in the α1(I) gene may contribute to osteoporosis. Homotrimer triple helices have different stability and less efficient fibrillogenesis than heterotrimers. Their fibrils have different mechanical properties. However, very little is known about their molecular interactions and fibrillogenesis in mixtures with normal heterotrimers. Here we studied the kinetics and thermodynamics of fibril formation in such mixtures by combining traditional approaches with 3D confocal imaging of fibrils, in which homo- and heterotrimers were labeled with different fluorescent colors. In a mixture, following a temperature jump from 4 to 32 °C, we observed a rapid increase in turbidity most likely caused by formation of homotrimer aggregates. The aggregates promoted nucleation of homotrimer fibrils that served as seeds for mixed and heterotrimer fibrils. The separation of colors in confocal images indicated segregation of homo- and heterotrimers at a subfibrillar level throughout the process. The fibril color patterns continued to change slowly after the fibrillogenesis appeared to be complete, due to dissociation and reassociation of the pepsin-treated homo- and heterotrimers, but this remixing did not significantly reduce the segregation even after several days. Independent homo- and heterotrimer solubility measurements in mixtures confirmed that the subfibrillar segregation was an equilibrium property of intermolecular interactions and not just a kinetic phenomenon. We argue that the subfibrillar segregation may exacerbate effects of a small fraction of α1(I) homotrimers on formation, properties, and remodeling of collagen fibers.  相似文献   

9.
It is established fact that type I collagen spontaneously self-assembles in vitro in the absence of cells or other macromolecules. Whether or not this is the situation in vivo was unknown. Recent evidence shows that intracellular cleavage of procollagen (the soluble precursor of collagen) to collagen can occur in embryonic tendon cells in vivo, and when this occurs, intracellular collagen fibrils are observed. A cause-and-effect relationship between intracellular collagen and intracellular fibrils was not established. Here we show that intracellular cleavage of procollagen to collagen occurs in postnatal murine tendon cells in situ. Pulse-chase analyses showed cleavage of procollagen to collagen via its two propeptide-retained intermediates. Furthermore, immunoelectron microscopy, using an antibody that recognizes the triple helical domain of collagen, shows collagen molecules in large-diameter transport compartments close to the plasma membrane. However, neither intracellular fibrils nor fibripositors (collagen fibril-containing plasma membrane protrusions) were observed. The results show that intracellular collagen occurs in murine tendon in the absence of intracellular fibrillogenesis and fibripositor formation. Furthermore, the results show that murine postnatal tendon cells have a high capacity to prevent intracellular collagen fibrillogenesis.  相似文献   

10.
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.  相似文献   

11.
This article details a quantitative method to measure the D-periodic spacing of type I collagen fibrils using atomic force microscopy coupled with analysis using a two-dimensional fast fourier transform approach. Instrument calibration, data sampling and data analysis are discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of type I collagen morphology in disease models of estrogen depletion and osteogenesis imperfecta (OI) are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage osteoporosis and OI. The ability to quantitatively characterize nanoscale morphological features of type I collagen fibrils will provide important structural information regarding type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knockout studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments.  相似文献   

12.
Using classical light scattering theory it is shown that the turbidimetric lag phase is a property of macromolecular systems that form linear aggregates during the initial period of self-assembly. This analysis and previous observations on Type I collagen suggests that initiation occurs by the conversion of single molecules into linear dimers in which neighboring molecules are staggered by 4·0 D (D = 67 nm). Linear.growth of dimers occurs by 4 D addition of either single molecules or linear aggregates until the aggregate is about 60 to 70 molecules long. Linear growth appears to involve charged binding sites in the amino and carboxy termini. The same sites have been shown to be involved in crosslink formation and in the attachment of disaccharides.Lateral growth occurs via the rapid formation of several discretely sized intermediates which lead to the formation of narrow fibrils ~ 25 nm wide. Narrow fibrils individually wrap around each other increasing the diameter to 100 nm or greater.  相似文献   

13.
Previous observations suggested that pNcollagen III, the partially processed form of type III procollagen, coats fibrils of collagen I and thereby helps regulate the diameter of fibrils formed by collagen I. The previous observations, however, did not exclude the possibility that pNcollagen III was deposited on preformed collagen I fibrils after the fibrils were assembled. Here, mixtures of pNcollagen III and collagen I were generated simultaneously by enzymatic cleavage of precursor forms of the proteins. The results demonstrated that pNcollagen III forms true copolymers with collagen I. The presence of pNcollagen III both inhibited the rate at which collagen I assembled into fibrils and decreased the amount of collagen I incorporated into fibrils at steady-state equilibrium. In addition, the results demonstrated that copolymerization of pNcollagen III with collagen I generated fibrils that were thinner than fibrils generated under the same conditions from collagen I alone. Increasing the initial molar ratio of pNcollagen III to collagen I in the solution-phase increased the amount of pNcollagen III copolymerizing with collagen I and progressively decreased the diameter of the fibrils. Therefore, the copolymers were heterogeneous in that the stoichiometry of the two monomers in the fibrils varied. The results are consistent with a model in which pNcollagen III can regulate the diameter of collagen I fibrils by coating the surface of the fibrils and thereby allow tip growth but not lateral growth of the fibrils.  相似文献   

14.
15.
In the tendon, the development of mature mechanical properties is dependent on the assembly of a tendon-specific extracellular matrix. This matrix is synthesized by the tendon fibroblasts and composed of collagen fibrils organized as fibers, as well as fibril-associated collagenous and non-collagenous proteins. All of these components are integrated, during development and growth, to form a functional tissue. During tendon development, collagen fibrillogenesis and matrix assembly progress through multiple steps where each step is regulated independently, culminating in a structurally and functionally mature tissue. Collagen fibrillogenesis occurs in a series of extracellular compartments where fibril intermediates are assembled and mature fibrils grow through a process of post-depositional fusion of the intermediates. Linear and lateral fibril growth occurs after the immature fibril intermediates are incorporated into fibers. The processes are regulated by interactions of extracellular macromolecules with the fibrils. Interactions with quantitatively minor fibrillar collagens, fibril-associated collagens and proteoglycans influence different steps in fibrillogenesis and the extracellular microdomains provide a mechanism for the tendon fibroblasts to regulate these extracellular interactions.  相似文献   

16.
17.
The loci of the three amino acid residues that contribute their prosthetic groups to form the stable, nonreducible, trifunctional intermolecular cross-link histidinohydroxylysinonorleucine in skin collagen fibrils were identified. Two apparently homogeneous three-chained histidinohydroxylysinonorleucine cross-linked peptides were chromatographically isolated. They were obtained from a tryptic digest of denatured unreduced 6 M guanidine hydrochloride insoluble bovine skin collagen. Amino acid and sequence analyses demonstrated that the prosthetic groups of alpha 1(I)-chain Hyl-87, alpha 1(I)-chain Lys-16c, and alpha 2(I)-chain His-92 formed the cross-link. The latter results served to define the locus of the stable, nonreducible trifunctional moiety. Identical types of analyses were performed on the three-chained peptides isolated after bacterial collagenase digestion of the cross-linked tryptic peptides. This confirmed the initial identification and location of the three peptides linked by the cross-link. In addition, data reported here provide for a correction of the micromolecular structure for the alpha 2(I) chain. Stereochemical considerations concerning this trifunctional cross-link's specific locus indicate that the steric relationships between the alpha chains of skin and skeletal tissue collagens are fundamentally different and the intermolecular relationships in skin fibrils are specific for skin. The same molecular relationships also indicate that histidinohydroxylysinonorleucine links three molecules of collagen. The stereochemistry of cross-linking for skin collagen is in accordance with and explains the X-ray findings of a 65-nm periodicity found for this tissue [Stinson, R. H., & Sweeny, P. R. (1980) Biochim. Biophys. Acta 621, 158; Brodsky, B., Eikenberry, E. F., & Cassidy, K. (1980) Biochim. Biophys. Acta 621, 162].  相似文献   

18.
The formation in vitro of fibrils from type I acid-soluble calf skin collagen has been studied before and after removal of the extrahelical peptides with carboxypeptidase and with pepsin. Turbidimetric studies show that the mechanism of fibril growth in undigested collagen is similar to that in pepsin-digested collagen; following carboxypeptidase digestion, however, a different growth mechanism was apparent. The two mechanisms have been further characterized by electron microscopy. In the course of formation of fibrils from undigested collagen, “early fibrils” (short D-periodic fibrils that have both ends visible) occurred in the lag phase under the precipitating conditions employed here. After pepsin or carboxypeptidase digestion of the collagen no “early fibrils” were seen. In carboxypeptidase-digested collagen, lateral assembly was inhibited; after pepsin digestion, linear assembly was inhibited. Complete removal of the extrahelical peptides prevented fibril formation under the conditions used here. Electron-optical examination of segment-long-spacing (SLS) dimers established a more complete removal of the C-terminal peptide after carboxypeptidase digestion than after pepsin digestion. Analyses of staining patterns of SLS dimers and fibrils from undigested and digested samples showed that the C-terminal peptide in SLS crystallites and fibrils formed from undigested collagen is in a condensed conformation. A proposed conformation, in which condensation occurs predominantly in a hydrophobic region at the proximal end of the C-terminal peptide, is discussed in terms of a dual role for the C-terminal peptide in fibrillogenesis. One role, shared with the N-terminal peptide, is to participate in interactions between the 4D-staggered molecules leading to the formation of linear aggregates; the other is to participate in interactions between these linear aggregates giving rise to D-periodic aggregates and lateral (as well as linear) growth.  相似文献   

19.
20.
The network of the fibrillar collagens I, III, and V, extracted from fetal calf skin and cleaved with cyanogen bromide, was studied by means of ultraviolet matrix-assisted laser desorption ionization time-of-flight mass spectrometry (UV-MALDI MS). Nearly all of the expected cyanogen bromide peptides of the different alpha chains were detected. Distinct peptides are identified that can serve as a reference signal for the individual alpha-chains. Homo- and heterotypic cross-linking patterns, some of which have not been described before for bovine collagen, are indicated by comparison of the mass spectrometric data with documented amino acid sequences. Potential cross-linking mechanisms are discussed. For example, the mass spectrometric data suggest that the formation of heterotypic I/III and I/V fibrils is substantially determined by the telo-regions of type I collagen, which are covalently connected to the corresponding helical and nonhelical cross-linking domains of adjacent molecules either by 4D or 0D-stagger bonds. The chemical nature of the cross-links can be concluded. The data also indicate a disturbed formation of heterotypic fibrils. Finally, collagen glycosylation can also be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号