首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S R Earle  S G O'Neal  R R Fisher 《Biochemistry》1978,17(22):4683-4690
Chemical-modification studies on submitochondrial particle pyridine dinucleotide transhydrogenase (EC 1.6.1.1) demonstrate the presence of one class of sulfhydryl group in the nicotinamide adenine dinucleotide phosphate (NADP) site and another peripheral to the active site. Reaction of the peripheral sulfhydryl group with N-ethylmaleimide, or both classes with 5,5'-dithiobis(2-nitrobenzoic acid), completely inactivated transhydrogenase. NADP+ or NADPH nearly completely protected against 5,5'-dithiobis(2-nitrobenzoic acid) inactivation and modification of both classes of sulfhydryl groups, while NADP+ only partially protected against and NADPH substantially stimulated N-ethylmaleimide inactivation. Methyl methanethiolsulfonate treatment resulted in methanethiolation at both classes of sulfhydryl groups, and either NADP+ or NADPH protected only the NADP site group. S-Methanethio and S-cyano transhydrogenases were active derivatives with pH optima shifted about 1 unit lower than that of the native enzyme. These experiments indicate that neither class of sulfhydryl group is essential for transhydrogenation. Lack of involvement of either sulfhydryl group in energy coupling to transhydrogenation is suggested by the observations that S-methanethio transhydrogenase is functional in (a) energy-linked transhydrogenation promoted by phenazine methosulfate mediated ascorbate oxidation and (b) the generation of a membrane potential during the reduction of NAD+ by reduced nicotinamide adenine dinucleotide phosphate (NADPH).  相似文献   

2.
Pyridine dinucleotide transhydrogenase of the Rhodospirillum rubrum chromatophore membrane was readily resolved by a washing procedure into two inactive components, a soluble transhydrogenase factor protein and an insoluble membrane-bound factor. Transhydrogenation was reconstituted on reassociation of these components. The capacity of the membrane factor to reconstitute enzymatic activity was lost after proteolysis of soluble transhydrogenase factor-depleted membranes with trypsin. NADP+ or NADPH, but neither NAD+ nor NADH, stimulated by several fold the rate of trypsin-dependent inactivation of the membrane factor. Substantial protection of the membrane factor from proteolytic inactivation was observed in the presence of Mg2+ ions, an inhibitor of transhydrogenation, or when the soluble transhydrogenase factor was bound to the membrane. Coincident with the loss of enzymatic reconstitutive capacity of the membrane factor was a loss in the ability of the membranes to bind the soluble transhydrogenase factor in a stable complex. The membrane component was inactivated by preincubating soluble transhydrogenase factor-depleted membranes at temperatures above 45 degrees. NADP+, NADPH, or Mg2+ ions, but neither NAD+ nor NADH, protected against inactivation. These studies indicate that (a) the binding of NADP+ or NADPH to the membrane factor promotes a conformational alteration in the protein such that its themostability and susceptibility to proteolysis are increased, and (b) the inhibitory Mg2+ ion-binding site resides in the membrane component.  相似文献   

3.
An extramitochondrial acetyl-CoA hydrolase (EC 3.1.2.1) purified from rat liver was inactivated by heavy metal cations (Hg2+, Cu2+, Cd2+ and Zn2+), which are known to be highly reactive with sulfhydryl groups. Their order of potency for enzyme inactivation was Hg2+ greater than Cu2+ greater than Cd2+ greater than Zn2+. This enzyme was also inactivated by various sulfhydryl-blocking reagents such as p-hydroxymercuribenzoate (PHMB), N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and iodoacetate (IAA). DL-Dithiothreitol (DTT) reversed the inactivation of this enzyme by DTNB markedly, and that by PHMB slightly, but did not reverse the inactivations by NEM, DTNB and IAA. Benzoyl-CoA (a substrate-like competitive inhibitor) and ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by PHMB, NEM, DTNB and IAA. These results suggest that the essential sulfhydryl groups are on or near the substrate binding site and nucleotide binding site. The enzyme contained about four sulfhydryl groups per mol of monomer, as estimated with DTNB. When the enzyme was denatured by 4 M guanidine-HCl, about seven sulfhydryl groups per mol of monomer reacted with DTNB. Two of the four sulfhydryl groups of the subunit of the native enzyme reacted with DTNB first without any significant inactivation of the enzyme, but its subsequent reaction with the other two sulfhydryl groups seemed to be involved in the inactivation process.  相似文献   

4.
Incubation of human placental aldose reductase (EC 1.1.1.21) with the sulfhydryl oxidizing reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM) results in a biexponential loss of catalytic activity. Inactivation by DTNB or NEM is prevented by saturating concentrations of NADPH. ATP-ribose offers partial protection against inactivation by DTNB, whereas NADP, nicotinamide mononucleotide (NMN), and the substrates glyceraldehyde and glucose offer little or no protection. The inactivation by DTNB was reversed by dithiothreitol and partially by 2-mercaptoethanol but not by KCN. When the release of 2-nitro-5-mercaptobenzoic acid was measured, 3 mol of sulfhydryl residues was found to be modified per mole of the enzyme by DTNB. Correlation of the fractional activity remaining with the extent of modification by the statistical method of C.-L. Tsou (1962, Sci. Sin. 11, 1535-1558) indicates that of the three reactive residues, one reacts at a faster rate than the other two, and that two residues are essential for the catalytic activity of the enzyme. Labeling of the total sulfhydryl by [14C]NEM and quantification of DTNB-reactive residues in the enzyme denatured by 6 M urea indicates that a total of seven sulfhydryl residues are present in the protein. The modification of the enzyme did not affect Km glyceraldehyde, but the modified enzyme had a lower Km NADPH. Kinetic analysis of the data suggests that a biexponential nature of inactivation could be due to the formation of a dissociable E:DTNB complex and the presence of a partially active enzyme species.  相似文献   

5.
The effect of glutathione, glutathione disulfide and the dithiol reagent phenylarsine oxide on purified soluble as well as reconstituted mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated. Glutathione disulfide and phenylarsine oxide caused an inhibition of transhydrogenase, the extent of which was dependent on the presence of either of the transhydrogenase substrates. In the absence of NADPH glutathione protected partially against inactivation by glutathione disulfide and phenylarsine oxide. In the presence of NADPH glutathione also inhibited transhydrogenase. Reconstituted transhydrogenase vesicles behaved differently as compared to the soluble transhydrogenase and was partially uncoupled by GSSG. It is concluded that transhydrogenase contains a dithiol that is essential for catalysis as well as for proton translocation.  相似文献   

6.
NADP-linked malic enzyme from Escherichia coli W contains 7 cysteinyl residues per enzyme subunit. The reactivity of sulfhydryl (SH) groups of the enzyme was examined using several SH reagents, including 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). 1. Two SH groups in the native enzyme subunit reacted with DTNB (or NEM) with different reaction rates, accompanied by a complete loss of the enzyme activity. The second-order modification rate constant of the "fast SH group" with DTNB coincided with the second-order inactivation rate constant of the enzyme by the reagent, suggesting that modification of the "fast SH group" is responsible for the inactivation. When the enzyme was denatured in 4 M guanidine HCl, all the SH groups reacted with the two reagents. 2. Althoug the inactivation rate constant was increased by the addition of Mg2+, an essential cofactor in the enzyme reaction, the modification rate constant of the "fast SH group" was unaffected. The relationship between the number of SH groups modified with DTNB or NEM and the residual enzyme activity in the absence of Mg2+ was linear, whereas that in the presence of Mg2+ was concave-upwards. These results suggest that the Mg2+-dependent increase in the inactivation rate constant is not the result of an increase in the rate constant of the "fast FH group" modification. 3. The absorption spectrum of the enzyme in the ultraviolet region was changed by addition of Mg2+. The dissociation constant of the Mg2+-enzyme complex obtained from the Mg2+- dependent increment of the difference absorption coincided with that obtained from the Mg2+- dependent enhancement of NEM inactivation. 4. Both the inactivation rate constant and the modification rate constant of the "fast SH group" were decreased by the addition of NADP+. The protective effect of NADP+ was increased by the addition of Mg2+. Based on the above results, the effects of Mg2+ on the SH-group modification are discussed from the viewpoint of conformational alteration of the enzyme.  相似文献   

7.
Reactions catalyzed by NAD-linked malic enzyme from Escherichia coli were investigated. In addition to L-malate oxidative decarboxylase activity (Activity 1) and oxaloacetate decarboxylase activity (Activity 2), the enzyme exhibited oxaloacetate reductase activity (Activity 3) and pyruvate reductase activity (Activity 4). Optimum pH's for Activities 3 and 4 were 4.0 and 5.0, and their specific activities were 1.7 and 0.07, respectively. Upon reaction with N-ethylmaleimide (NEM), Activity 1 decreased following pseudo-first order kinetics. Activity 2 decreased in parallel with Activity 1, while Activities 3 and 4 were about ten-fold enhanced by NEM modification. Modification of one or two sulfhydryl groups per enzyme subunit caused an alteration of the activities. Tartronate, a substrate analog, NAD+, and Mn2+ protected the enzyme against the modification. The Km values for the substrates and coenzymes were not significantly affected by NEM modification. Similarly, other sulfhydryl reagents such as p-hydroxymercuribenzoate (PMB), 5,5'-dithiobis(2-nitrobenzoate) (DTNB), and iodoacetate inhibited the decarboxylase activities and activated the reductase activities to various extents. Modification of the enzyme with PMB or DTNB was reversed by the addition of a sulfhydryl compound such as dithiothreitol or 2-mercaptoethanol. Based on the above results, the mechanism of the alteration of enzyme activities by sulfhydryl group modification is discussed.  相似文献   

8.
M Yamaguchi  Y Hatefi 《Biochemistry》1989,28(14):6050-6056
The mitochondrial nicotinamide nucleotide transhydrogenase is a dimeric enzyme of monomer Mr 110,000. It is located in the inner mitochondrial membrane and catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner membrane. The amino acid sequence and the nucleotide binding sites of the enzyme have been determined [Yamaguchi, M., Hatefi, Y., Trach, K., & Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767; Wakabayashi, S., & Hatefi, Y. (1987) Biochem. Int. 15, 915-924]. N-Ethylmaleimide, as well as other sulfhydryl group modifiers, inhibits the transhydrogenase. The presence of NADP in the incubation mixture suppressed the inhibition rate by N-ethylmaleimide, and the presence of NADPH greatly increased it. NAD and NADH had little or no effect. The NADPH effect was concentration dependent and saturable, with a half-maximal NADPH concentration effect close to the Km of the enzyme for NADPH. Study of the effect of pH on the N-ethylmaleimide inhibition rate showed that NADPH binding by the enzyme lowers the apparent pKa of the N-ethylmaleimide-sensitive group by 0.4 of a pH unit and NADP binding raises this pKa by 0.4 of a pH unit, thus providing a rationale for the effects of NADP and NADPH on the N-ethylmaleimide inhibition rate. With the use of N-[3H]ethylmaleimide, the modified sulfhydryl group involved in the NADP(H)-modulated inhibition of the transhydrogenase was identified as that belonging to Cys-893, which is located 113 residues upstream of the tyrosyl residue modified by [p-(fluorosulfonyl)benzoyl]-5'-adenosine at the putative NADP(H) binding site of the enzyme (see above references).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.  相似文献   

10.
The assimilatory NADPH-nitrate reductase (NADPH:nitrate oxidoreductase, EC 1.6.6.3) from Neurospora crassa is competitively inhibited by 3-aminopyridine adenine dinucleotide (AAD) and 3-aminopyridine adenine dinucleotide phosphate (AADP) which are structural analogs of NAD and NADP, respectively. The amino group of the pyridine ring of AAD(P) can react with nitrous acid to yield the diazonium derivative which may covalently bind at the NAD(P) site. As a result of covalent attachment, diazotized AAD(P) causes time-dependent irreversible inactivation of nitrate reductase. However, only the NADPH-dependent activities of the nitrate reductase, i.e. the overall NADPH-nitrate reductase and the NADPH-cytochrome c reductase activities, are inactivated. The reduced methyl viologen- and reduced FAD-nitrate reductase activities which do not utilize NADPH are not inhibited. This inactivation by diazotized AADP is prevented by 1 mM NADP. The inclusion of 1 muM FAD can also prevent inactivation, but the FAD effect differs from the NADP protection in that even after removal of the exogenous FAD by extensive dialysis or Sephadex G-25 filtration chromatography, the enzyme is still protected against inactivation. The FAD-generated protected form of nitrate reductase could again be inactivated if the enzyme was treated with NADPH, dialyzed to remove the NADPH, and then exposed to diazotized AADP. When NADP was substituted for NADPH in this experiment, the enzyme remained in the FAD-protected state. Difference spectra of the inactivated nitrate reductase demonstrated the presence of bound AADP, and titration of the sulfhydryl groups of the inactivated enzyme revealed that a loss of accessible sulfhydryls had occurred. The hypothesis generated by these experiments is that diazotized AADP binds at the NADPH site on nitrate reductase and reacts with a functional sulfhydryl at the site. FAD protects the enzyme against inactivation by modifying the sulfhydryl. Since NADPH reverses this protection, it appears the modifications occurring are oxidation-reduction reactions. On the basis of these results, the physiological electron flow in the nitrate reductase is postulated to be from NADPH via sulfhydryls to FAD and then the remainder of the electron carriers as follows: NADPH leads to -SH leads to FAD leads to cytochrome b-557 leads to Mo leads to NO-3.  相似文献   

11.
We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.  相似文献   

12.
The sulfhydryl groups required for the catalytic activity of gramicidin S synthetase of Bacillus brevis and Escherichia coli isoleucyl tRNA synthetase were compared. In gramicidin S synthetase 2(GS 2), about four sulfhydryl groups react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-ethylmaleimide (NEM), and are essential for gramicidin S formation in the presence of gramicidin S synthetase 1 (GS 1). These sulfhydryl groups are protected against DTNB and NEM reactions by the preincubation of GS 2 with amino acid substrates in the presence of ATP and MgCl2, like the sulfhydryl groups that react rapidly with DTNB or NEM and are required for the catalytic activity of GS 1 and isoleucyl tRNA synthetase. In GS 2, GS 1, and isoleucyl tRNA synthetase, the sulfhydryl group that reacts rapidly with NEM and is required for the catalytic activity is involved in the amino acid binding as a thioester. In isoleucyl tRNA synthetase, it is suggested that isoleucine may be transferred from the isoleucine thioester enzyme complex to tRNA by a mechanism similar to that proposed for gramicidin S synthetase.  相似文献   

13.
Bovine heart mitochondrial transhydrogenase, a redox-linked proton pump, can be functionally and asymmetrically inserted into liposomes by a cholate-dialysis procedure such that the active site faces the external medium. N-(4-Azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine), a membrane-impermeant photoprobe, when encapsulated in the vesicles, covalently modified the enzyme and inhibited transhydrogenation between NADPH and the 3-acetylpyridine analog of NAD+ (AcPyAD+) in a light-dependent manner. External AcPyAD+ increased the rate of inactivation several fold, whereas NADPH, NADP+, and NADH were without effect. Labeling of the enzyme by intravesicular [35S]NAP-taurine was enhanced by AcPyAD+ and NADP+, decreased by NADH, and not significantly affected by NADPH. These results indicate that transhydrogenase spans the membrane and that substrate binding alters the conformation of that domain of the enzyme protruding from the inner surface of the membrane.  相似文献   

14.
Kinetic measurements indicate that the energy-independent transhydrogenation of 3-acetylpyridine-NAD+ by NADPH in membranes of Escherichia coli follows a rapid equilibrium random bireactant mechanism. Each substrate, although reacting preferentially with its own binding site, is able to interact with the binding site of the other substrate to cause inhibition of enzyme activity. 5'-AMP (and ADP) and 2'-AMP interact with the NAD+- and NADP+-binding sites, respectively. Phenylglyoxal and 2,3-butanedione in borate buffer inhibit transhydrogenase activity presumably by reacting with arginyl residues. Protection against inhibition by 2,3-butanedione is afforded by NADP+, NAD+, and high concentrations of NADPH and NADH. Low concentrations of NADPH and NADH increase the rate of inhibition by 2,3-butanedione. Similar effects are observed for the inactivation of the transhydrogenase by tryptic digestion in the presence of these coenzymes. It is concluded that there are at least two conformations of the active site of the transhydrogenase which differ in the extent to which arginyl residues are accessible to exogenous agents such as trypsin and 2,3-butanedione. One conformation is induced by low concentrations of NADH and NADPH. Under these conditions the coenzymes could be reacting at the active site or at an allosteric site. The stimulation of transhydrogenase activity by low concentrations of the NADH is consistent with the latter possibility.  相似文献   

15.
1. Nicotinamide nucleotide transhydrogenase from Pseudomonas aeruginosa was purified to apparent homogeneity with an improved method employing affinity chromatography on N6-(6aminohexyl)-adenosine 2', 5'-bisphosphate-Sepharose 4B. 2. Polyacrylamide gel electrophoresis of the purified transhydrogenase carried out in the presence of sodium dodecyl sulphate, indicated a minimal molecular weight of 55000 +/- 2000. 3. The kinetic and regulatory properties of the purified transhydrogenase resembled those of the crude enzyme, i.e., NADPH, adenosine 2'-monophosphate and Ca2+ were activators whereas NADP+ was inhibitory. 4. Nicotinamide nucleotide-specific release of binding of the transhydrogenase to N6-(6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and N6-(-aminohexyl)-adenosine-5'-monophosphate-Sepharose suggests the presence of at least two separate binding sites for nicotinamide nucleotides, one that is specific for NADP(H) and one that binds both NAD(H) and NADP(H). 5. Binding of transhydrogenase to N6-)6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and activation of the enzyme by adenosine-2',5'-bisphophate showed a marked pH dependence. In contrast, inhibition of the Ca2+-activated enzyme by adenosine 2',5'-bisphosphate was virtually constant at various pH values. This descrepancy was interpreted to indicate the existence of separate nucleotide-binding effector and active sites.  相似文献   

16.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Licia N.Y. Wu  Ronald R. Fisher 《BBA》1982,681(3):388-396
Modification of pyridine dinucleotide transhydrogenase with tetranitromethane resulted in inhibition of its activity. Development of a membrane potential in submitochondrial particles during the reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH decreased to nearly the same extent as the transhydrogenase rate on tetranitromethane treatment of the membrane. Kinetics of the inactivation of homogeneous transhydrogenase and the enzyme reconstituted into phosphatidylcholine liposomes indicate that a single essential residue was modified per active monomer. NADP+, NADPH and NADH gave substantial protection against tetranitromethane inactivation of both the nonenergy-linked and energy-linked transhydrogenase reactions of submitochondrial particles and the NADPH → AcPyAD+ reaction of reconstituted enzyme. NAD+ had no effect on inactivation. Tetranitromethane modification of reconstituted transhydrogenase resulted in a decrease in the rate of coupled H+ translocation that was comparable to the decrease in the rate of NADPH → AcPyAD+ transhydrogenation. It is concluded that tetranitromethane modification controls the H+ translocation process solely through its effect on catalytic activity, rather than through alteration of a separate H+-binding domain. Nitrotyrosine was not found in tetranitromethane-treated transhydrogenase. Both 5,5′-dithiobis(2-nitrobenzoate)-accessible and buried sulfhydryl groups were modified with tetranitromethane. NADH and NADPH prevented sulfhydryl reactivity toward tetranitromethane. These data indicate that the inhibition seen with tetranitromethane results from the modification of a cysteine residue.  相似文献   

18.
The nicotinamide nucleotide transhydrogenase of Escherichia coli has been purified from cytoplasmic membranes by pre-extraction of the membranes with sodium cholate and Triton X-100, solubilization of the enzyme with sodium deoxycholate in the presence of 1 M potassium chloride, and centrifugation through a 1.1 M sucrose solution. The purified enzyme consists of two subunits, alpha and beta, of apparent Mr 50000 and 47000. During transhydrogenation between NADPH and 3-acetylpyridine adenine dinucleotide by both the purified enzyme reconstituted into liposomes and the membrane-bound enzyme, a pH gradient is established across the membrane as indicated by the quenching of the fluorescence of 9-aminoacridine. Treatment of transhydrogenase with N,N'-dicyclohexylcarbodiimide results in an inhibition of proton pump activity and transhydrogenation, suggesting that proton translocation and catalytic activities are obligatory linked. NADH protected the enzyme against inhibition by N,N'-dicyclohexylcarbodiimide, while NADP, and to a lesser extent NADPH, appeared to increase the rate of inhibition. [14C]Dicyclohexylcarbodiimide preferentially labelled the 50000-Mr subunit of the transhydrogenase enzyme. The presence of an allosteric binding site which reacts with NADH, but not with reduced 3-acetylpyridine adenine dinucleotide, has been demonstrated.  相似文献   

19.
Incubation of maize (Zea mays) leaf NADP-malic enzyme with monofunctional and bifunctional N-substituted maleimides results in an irreversible inactivation of the enzyme. Inactivation by the monofunctional reagents, N-ethylmaleimide (NEM) and N-phenylmaleimide, followed pseudo-first-order kinetics. The maximum inactivation rate constant for phenylmaleimide was 10-fold higher than that for NEM, suggesting a possible hydrophobic microenvironment of the residue(s) involved in the modification of the enzyme. In contrast, the inactivation kinetics with the bifunctional maleimides, ortho-, meta-, and para-phenylenebismaleimide, were biphasic, probably due to different reactivities of the groups reacting with the two heads of these bifunctional reagents, with a possible cross-linking of two sulfhydryl groups. The inactivation by mono and bifunctional maleimides was partially prevented by Mg2+ and l-malate, and NADP prevented the inactivation almost totally. Determination of the number of reactive sulfhydryl groups of the native enzyme with [3H]NEM in the absence or presence of NADP showed that inactivation occurred concomitantly with the modification of two cysteinyl residues per enzyme monomer. The presence of these two essential residues was confirmed by titration of sulfhydryl groups with [3H]NEM in the enzyme previously modified by o-phenylenebismaleimide in the absence or presence of NADP.  相似文献   

20.
The 2,4-dinitrophenyl derivative of dephospho-CoA and the 7-nitrobenzofurazan-4-yl derivative of CoA are competitive inhibitors (Ki 3 microM and 2.6 microM respectively) of mitochondrial transhydrogenase with regard to NAD+ and NADPH respectively. The 7-nitrobenzofurazan-4-yl derivative of dephospho-CoA is a competitive inhibitor with regard to both transhydrogenase substrates with the same Ki equal to 0.3 microM. The pattern of transhydrogenase inhibition with the 7-nitrobenzofurazan-4-yl derivative of dephospho-CoA indicates that one molecule of the inhibitor binds simultaneously to both the NADP(H) and the NAD(H) binding sites of the enzyme. This result is evidence of the short distance between the NADP(H) and the NAD(H) binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号