首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The primary structure of tRNAVal2a from baker's yeast has been determined. The general methods of the investigation are presented. Twenty six distinguished points can be noted in the tRNAVal2a and tRNA1Val from baker's yeast. The anticodon region of tRNAVal2a is represented by the sequence NAC, where N corresponds to a uridine analogue nucleoside of unknown structure. The comparison of primary structures of tRNAVal2a, tRNAVal2a, tRNA1Val from E. coli and tRNAVal2a and tRNA1Val from baker's yeast is analysed.  相似文献   

3.
4.
The major valine acceptor tRNA1Val from rabbit liver was purified and its nucleotide sequence determined by in vitro [32P] - labeling with T4 phage induced polynucleotide kinase and finger-printing techniques. Its primary structure was found to be identical with the major valine tRNA from mouse myeloma cells. According to the wobble hypothesis this tRNA, which exclusively has an IAC anticodon, should decode the valine codons GUU, GUC and GUA only. However, this tRNA recognizes all four valine codons with a surprising preference for GUG. It is unknown whether this is due to the lack of A37 modification next to the 3' end of the anticodon IAC. The nature of the inosine-guanosine interaction remains to be clarified.  相似文献   

5.
6.
Hall RS  Fedorov AA  Xu C  Fedorov EV  Almo SC  Raushel FM 《Biochemistry》2011,50(22):5077-5085
Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K(i) of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pK(a) of 6.0, and Zn-CDA has a kinetic pK(a) of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k(cat) and k(cat)/K(m), consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.  相似文献   

7.
A method is proposed for analysis of natural and chemically modified polynucleotides which consists in enzymatic conversion of the polymer or oligomer into nucleosides followed by cation-exchange chromotography on the microcolumns. By using the method developed it was shown that after treatment of the yeast tRNAVal and tRNAPhe with monoperphthalic acid N-oxides of adenosine and cytidine were formed. Poly (U, G) was not modified at a measurable extent whereas GMP was decomposed. In tRNAVal (yeast)the adenosines and cytosines of the anticodon loop and 3'-end are most reactive; it is the case for the C17 of the diHU-loop as well. These data are in agreement with the results obtained for tRNA modification with other reagents and for limited enzymatic hydrolysis of the tRNAVal. The limitations of the reaction of the monoperphthalate with nucleic acids are briefly discussed.  相似文献   

8.
The subnuclear localization of tRNA ligase in yeast   总被引:27,自引:3,他引:24       下载免费PDF全文
Yeast tRNA ligase is an enzyme required for tRNA splicing. A study by indirect immune fluorescence shows that this enzyme is localized in the cell nucleus. At higher resolution, studies using indirect immune electron microscopy show this nuclear location to be primarily at the inner membrane of the nuclear envelope, most likely at the nuclear pore. There is a more diffuse, secondary location of ligase in a region of the nucleoplasm within 300 nm of the nuclear envelope. When the amount of ligase in the cell is increased, nuclear staining increases but staining of the nuclear envelope remains constant. This experiment indicates that there are a limited number of ligase sites at the nuclear envelope. Since the other tRNA splicing component, the endonuclease, has the characteristics of an integral membrane protein, we hypothesize that it constitutes the site for the interaction of ligase with the nuclear envelope.  相似文献   

9.
10.
11.
12.
A comparative study of the solution structures of yeast tRNA(Asp) and tRNA(Phe) was undertaken with chemical reagents as structural probes. The reactivity of N-7 positions in guanine and adenine residues was assayed with dimethylsulphate and diethyl-pyrocarbonate, respectively, and that of the N-3 position in cytosine residues with dimethylsulphate. Experiments involved statistical modifications of end-labelled tRNAs, followed by splitting at modified positions. The resulting end-labelled oligonucleotides were resolved on polyacrylamide sequencing gels and analysed by autoradiography. Three different experimental conditions were used to follow the progressive denaturation of the two tRNAs. Experiments were done in parallel on tRNA(Asp) and tRNA(Phe) to enable comparison between the two solution structures and to correlate the results with the crystalline conformations of both molecules. Structural differences were detected for G4, G45, G71 and A21: G4 and A21 are reactive in tRNA(Asp) and protected in tRNA(Phe), while G45 and G71 are protected in tRNA(Asp) and reactive in tRNA(Phe). For the N-7 atom of A21, the different reactivity is correlated with the variable variable loop structures in the two tRNAs; in the case of G45 the results are explained by a different stacking of A9 between G45 and residue 46. For G4 and G71, the differential reactivities are linked to a different stacking in both tRNAs. This observation is of general significance for helical stems. If the previous results could be fully explained by the crystal structures, unexpected similarities in solution were found for N-3 alkylation of C56 in the T-loop, which according to crystallography should be reactive in tRNA(Asp). The apparent discrepancy is due to conformational differences between crystalline and solution tRNA(Asp) at the level of the D and T-loop contacts, linked to long-distance effects induced by the quasi-self-complementary anticodon GUC, which favour duplex formation within the crystal, contrarily to solution conditions where the tRNA is essentially in its free state.  相似文献   

13.
The primary structure of yeast mitochondrial tyrosine tRNA   总被引:3,自引:0,他引:3  
The mitochondrial tyrosine tRNA from Saccharomyces cerevisiae has been sequenced. It has two interesting structural features: (i) it lacks two semi-invariant purine residues in the D-loop which are involved in tertiary interactions in the yeast cytoplasmic tRNAPhe; (ii) it has a large variable loop and therefore resembles procaryotic tRNAsTyr rather than eucaryotic cytoplasmic ones.  相似文献   

14.
Whereas m1G, m2G, m22G, m7G, T, m1A, m5C and Cm methylase activities were found in total cell enzyme of Saccharomyces cerevisiae using under-methylated E. coli tRNA and E. coli B tRNA in reaction with or without Mg++, only m1G, m2G, m22G and T methylases occurred in mitochondria. Mitochondrial and cytoplasmic tRNA cannot be methylated by their homologous enzymes; only mitochondrial tRNA can be methylated in a heterologous reaction by total cell enzyme with formation of T, m5C, m1A and low amounts of m2G and m22G.  相似文献   

15.
The nucleoside composition of tRNA from highly purified yeast mitochondria shows the presence of T, ψ, hU, m1G, m2G, m22G, I and t6A whereas neither m7G, m5C, m3C, m1A, i6A and Y nor O′-methylated nucleosides (which are common in yeast cytoplasmic tRNA) were found. The G+C content is very low (35%). The overall methylation content is 2.7% which is about half the content of yeast cytoplasmic tRNA but similar to that of E. coli tRNA. Some rare nucleosides however which are found in E. coli (s4U, acp3U, m2A, m6A, ms2i6A, Q) were not found in yeast mitochondrial tRNA.  相似文献   

16.
Three-dimensional structure of the yeast ribosome.   总被引:4,自引:0,他引:4       下载免费PDF全文
The 80S ribosome from Saccharomyces cerevisiae has been reconstructed from cryo electron micrographs to a resolution of 35 A. It is strikingly similar to the 70S ribosome from Escherichia coli, while displaying the characteristic eukaryotic features familiar from reconstructions of ribosomes from higher eukaryotes. Aside from the elaboration of a number of peripherally located features on the two subunits and greater overall size, the largest difference between the yeast and E.coli ribosomes is in a mass increase on one side of the large (60S) subunit. It thus appears more elliptical than the characteristically globular 50S subunit from E.coli. The interior of the 60S subunit reveals a variable diameter tunnel spanning the subunit between the interface canyon and a site on the lower back of the subunit, presumably the exit site through which the nascent polypeptide chain emerges from the ribosome.  相似文献   

17.
Reinvestigation of the primary structure of yeast alanine tRNA   总被引:1,自引:0,他引:1  
C R Merril 《Biopolymers》1968,6(12):1727-1735
The primary structure of alanine transfer RNA reported by Holley and his colleagues contained a number of inconsistencies between the data and the proposed sequence. In order to resolve these inconsistencies, alanine tRNA was isolated from yeast by using countercurrent techniques similar to those employed by Holley. The alanine accepting RNA obtained by this procedure was found by further purification employing reverse phase partition chromatography, to contain two different species of alanine tRNA. One of these, tRNAala I, could be shown to be similar to Holley's proposed structure with the addition of a guanine between positions 47 and 48 and only 2 dihydrouridines instead of the 2.5 reported by Holley.  相似文献   

18.
19.
Splicing of yeast tRNA precursors: structure of the reaction intermediates.   总被引:37,自引:0,他引:37  
G Knapp  R C Ogden  C L Peebles  J Abelson 《Cell》1979,18(1):37-45
The intermediates of the yeast tRNA splicing reaction have been characterized. The intervening sequence is excised as an unique linear molecule. It has 5'-hydroxyl and 3'-phosphate termini. Correspondingly, the half-tRNA molecules are shown to have a 3'-phosphate terminus on the 5' half and 5'-hydroxyl terminus on the 3' half. These isolated halves have been shown to be active in the ligation step of tRNA splicing. Removal of the 3'-phosphate from the 5' half eliminates the ability of the 5' half to participate in ligation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号