首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The effect of intraventricular beta-endorphin-(1-27) on the spinal release of Met-enkephalin induced by intraventricular beta-endorphin was studied using the intrathecal superfusion technique in urethane anesthetized rats. Intraventricular injection of beta-endorphin at a dose of 15 micrograms released Met-enkephalin from the spinal cord. This release of Met-enkephalin induced by beta-endorphin was significantly reduced by beta-endorphin-(1-27), 60 micrograms, injected intraventricularly. Injection of beta-endorphin (1-27) itself did not cause any release of Met-enkephalin. The finding is in line with the previous report that beta-endorphin (1-27) inhibited the analgesia induced by beta-endorphin.  相似文献   

2.
We have previously reported that administration of beta-endorphin intraventricularly in the rat increases the release of immunoreactive Met-enkephalin from the spinal cord. To further eliminate the possibility that the increase in Met-enkephalin might arise from the degradation of beta-endorphin injected, the effect of peptidase inhibitors, aprotinin and bacitracin, on the spinal fluid content of Met-enkephalin released by intraventricular beta-endorphin was studied using an intrathecal perfusion technique in urethane anesthetized rats. Inhibition of peptidases by intraventricular aprotinin and bacitracin did not decrease nor enhance the increased content of Met-enkephalin in the spinal perfusate produced by intraventricular beta-endorphin. The result indicates that the Met-enkephalin arises from neuronal release in the spinal cord rather than from degradation of the beta-endorphin injected intraventricularly.  相似文献   

3.
The effects of neuroactive peptides on the release of 5-HT were studied. The 5-HT released from the spinal cord was significantly increased by somatostatin, substance P and peripheral pain stimulation (tail pinch), but not affected by neurotensin, beta-endorphin and met-enkephalin. The somatostatin-evoked 5-HT release was inhibited by baclofen and met-enkephalin in vivo but not in vitro. The substance P-evoked 5-HT release was strongly inhibited by baclofen, and slightly potentiated by met-enkephalin in vivo but not in vitro. The tail pinch-induced 5-HT release was inhibited by met-enkephalin and baclofen, but potentiated by naloxone. These findings provide further evidence on the important role of neuropeptides and suggest that the descending serotonergic neurones are modulated by neuropeptide interneurones in the spinal cord.  相似文献   

4.
Plasma concentrations of beta-endorphin and met-enkephalin were measured, with appropriate radioimmunoassays, in cows during gestation and at parturition and in newborn calves. During pregnancy beta-endorphin immunoreactivity (IR) concentration increased, but values during the last month of gestation were not different from those at parturition. Highest met-enkephalin IR levels were obtained in cows during calving. A term Caesarean section caused an increase in plasma beta-endorphin and met-enkephalin IR concentrations, but no such increase occurred in cases of a preterm Caesarean section. In calves beta-endorphin IR values were lower before umbilical cord rupture than immediately after birth. Values decreased continuously thereafter. This was also the case for met-enkephalin IR concentrations in calves born at term. In preterm calves met-enkephalin IR values were low immediately after delivery and increased during the first hour of life. A significant correlation existed between the degree of acidosis and plasma levels of both opioid peptides in the calves. We conclude that a direct stimulation of peripheral beta-endorphin release by the pain or stress associated with calving does not seem to exist in cattle, whereas met-enkephalin seems to be more directly related to parturition. In calves the change to the extrauterine environment causes an immediate, increased release of both opioids.  相似文献   

5.
By RIA there were studied the contents of corticosterone, ACTH, beta-endorphin and insulin in the blood plasma, met- and leu-enkephalin in different regions of the rat brain and in the adrenal glands after a 6-hour immobilization. The stress increased the content of corticosterone, ACTH, beta-endorphin, but not insulin in the blood plasma, and the levels of met-enkephalin in the adrenal glands, but decreased the met-enkephalin contents in the striatum. The injection of DSIP (0.1 mg/kg, i/p) blocked partly the elevation of corticosterone only. The authors propose, that stress-protective action of DSIP is realized with the involvements of the hypothalamo-pituitary-adrenal gland system.  相似文献   

6.
Antiserum directed against methionine enkephalin (metenkephalin) was used to determine its anatomical distribution in rat brain. Cross reactivity of that antiserum was not detectable against leucine enkephalin (leu-enkephalin), β-lipotropin (β-LPH), β-endorphin or assorted peptide fragments of met-enkephalin; alpha-endorphin was 370 times less active than met-enkephalin. The localization of met-enkephalin was carried out in the presence of excess leu-enkephalin and yet could be blocked with equal amounts of met-enkephalin. Met-enkephalin was detected in several structures in the spinal cord, medulla, pons, mesencephalon, diencephalon and telencephalon. No met-enkephalin was detected in cerebellum or cerebral cortex.  相似文献   

7.
Diazepam-induced feeding in rats is antagonized not only by the opiate antagonist naloxone but also intraventricular administration of specific antisera to the endogenous opioid peptides met-enkephalin or beta-endorphin. Pituitary beta-endorphin is probably not implicated in the diazepam effect since blockade with the glucocorticoid dexamethasone of the release of beta-endorphin from the anterior pituitary does not modify the diazepam-induced feeding, which is however prevented by TRH, a suggested physiological antagonist of some of the effects of opioid peptides. The possible central participation of both beta-endorphin and met-enkephalin in the ingestive behavior induced by diazepam gives further support to the postulated physiological role of endogenous opioids in appetite regulation.  相似文献   

8.
Brain and spinal cord neuropeptides in adjuvant induced arthritis in rats   总被引:2,自引:0,他引:2  
The concentrations of brain and spinal cord beta-endorphin, met-enkephalin, dynorphin and substance P were measured in rats bearing the Freund adjuvant induced arthritis. Beta-endorphin brain concentrations decreased gradually in time with a nadir on day twenty-one, when arthritis was at its maximum, and were back to normal by day thirty-five, when arthritis was no more evident. Met-enkephalin concentrations increased in brain areas and in the lumbar spinal cord and returned to normal with the same time pattern, while dynorphin and substance P concentrations did not change. These data indicate that peripheral lesions can induce important changes in brain concentrations of some opioid peptides involved in the modulation of pain.  相似文献   

9.
The effects of single intracerebroventricular (icv) injections of either 0.5 microgram pertussis toxin or 5 micrograms N-ethylmaleimide (NEM) on the levels of immunoreactive substance P (ir-SP) and serotonin (5-HT) in the brain and spinal cord of rats have been assessed. At two and six days after pertussis toxin injection, the levels of ir-SP appeared significantly diminished in the spinal cord (about 34%). This reduction was even greater at two days after NEM injection (43%). These two agents did not alter the ir-SP of the midbrain and thalamus, whereas NEM increased the neuropeptide content in the pons-medulla. On the other hand, the thalamic content of serotonin was reduced two days after pertussis toxin (32%) or NEM (20%) injection. The indoleamine levels of the spinal cord were reduced by these treatments (20%), while in the midbrain a slight decrease could be observed. These findings suggest that pertussis toxin and NEM produce these effects by acting upon a common neural substrate.  相似文献   

10.
Repeated preoptic-anterior hypothalamic (POAH) injections of saline and 10 or 25 micrograms/microliters of beta-endorphin or ACTH were given to groups of male Sprague-Dawley rats. One hr after the fifth injection of beta-endorphin or ACTH, each rat received a POAH injection of naloxone HCl (10 micrograms/microliters). Core (Tre-rectal) and surface (Tt-tail) temperatures, metabolic (VO2) and behavioral responses were recorded 30 min before and 60 min after each drug injection. The initial POAH injection of either dose of beta-endorphin produced a hyperthermia. Peak hyperthermia was reduced in the group given 10 micrograms/microliters of beta-endorphin repeatedly. TtS rose after each beta-endorphin injection but temporally lagged Tre increases. Metabolic rate (VO2) was increased with repeated POAH injections of beta-endorphin. Naloxone reduced the elevated Tre seen with beta-endorphin by increasing Tt's further and reducing VO2. POAH administration of ACTH evoked only a slight hyperthermic Tre response, but elevated TtS and VO2S, due to enhanced grooming and explorative behavior. With repeated ACTH injections, TreS did not change from those on the first day as TtS and VO2 remained enhanced. Naloxone reduced VO2 and TtS of the ACTH-treated rats but TreS still were unchanged. Results suggest that the hyperthermia of unrestrained rats given an acute as opposed to repeated POAH beta-endorphin injections is mediated by different effector mechanisms. With the doses used, the slight and unchanging TreS seen with ACTH occurred because this peptide increased heat production due to locomotor activation yet also exaggerated heat loss by vasodilating the peripheral vasculature.  相似文献   

11.
Morphine releases endogenous opioids into the circulation of dogs. To test the stereospecificity of this effect, as well as to determine whether morphine also releases endogenous opioids centrally, which might be involved in its antinociceptive action, the effects of (-)-morphine sulfate (10 mg/kg, sc) or (+)-morphine hydrobromide on antinociception in a dog tail-flick test, on semi-quantified morphine-induced signs of salivation, emesis, defecation and ataxia, and on the plasma and cerebrospinal fluid (CSF) levels of endogenous opioid peptides were studied. Plasma and CSF levels of immunoreactive beta-endorphin (i-BE), met-enkephalin (i-ME), leu-enkephalin (i-LE), and dynorphin (i-DY) were quantified by radioimmunoassay in octadecylsilyl-silica cartridge extracts. Immunoreactive morphine (i-M) levels were measured in unextracted samples. (-)-Morphine treatment significantly increased antinociception, morphine-induced signs, i-M levels in plasma and CSF, and i-BE, i-ME, and i-LE levels in plasma, but not CSF. Levels of i-DY remained constant in plasma and CSF. (+)-Morphine treatment did not alter any of these parameters, indicating that the effects of morphine on nociception, behavioral signs, and plasma endogenous opioids in dogs were stereoselective. It is concluded that morphine does not cause an increase in immunoreactive endogenous opioid peptides in the CSF at the time of its peak antinociceptive effect.  相似文献   

12.
The effects of intravenous infusions of morphine, met-enkephalin and leu-enkephalin on gastric acid secretion, gastrin release and gastric emptying were investigated in four dogs with gastric cannulas stimulated by a liquid peptone meal. The actions of a potent opiate antagonist, naloxone, used alone or combined with opiates were also studied. Morphine, met-and leu-enkephalin decreased the fractional gastric emptying rate. Acid secretion was decreased by enkephalins and increased by high doses of morphine. Enkephalins and to a lesser degree morphine inhibited gastrin release during the first hour following the administration of the meal. Only leu-enkephalin decreases significantly the integrated gastrin response. Naloxone at the doses used antagonized partly or totally the effects of opiates on gastric emptying but not those on gastric secretion or gastrin release. Naloxone infused alone had no significant effect on the gastric functions tested. These studies indicate that in dogs stimulated by a liquid test meal, enkephalins inhibit gastric emptying, acid secretion and gastrin release. Morphine inhibits gastric emptying and gastrin release and enhances acid secretion.  相似文献   

13.
Enhancement of natural cytotoxicity by beta-endorphin   总被引:8,自引:0,他引:8  
The role of enkephalins, beta-endorphin, or other neuropeptides produced by the nervous system in the alteration of immune responsiveness is generally unknown. The present studies were undertaken to investigate the role of these neuropeptides in the modulation of human spontaneous cytotoxicity induced by natural killer (NK) cells. Natural cytotoxicity was measured by using a standard 51Cr release assay with radiolabeled K562 cells. NK activity was significantly enhanced by both beta-endorphin (30.5 +/- 11.5%, M +/- SE, relative enhancement at 50:1, effector:target (E:T) ratio, 10(-14)M beta-endorphin) and methionine-enkephalin (met-enkephalin) (27.4 +/- 9.7% relative enhancement at 10(-9)M). The magnitude of relative enhancement significantly correlated with increasing concentrations of beta-endorphin. Leucine-enkephalin, alpha-endorphin, and morphine did not augment NK activity. The enhancement of NK activity with beta-endorphin increased at all E:T ratios tested. Naloxone inhibited the augmentation of NK activity produced by beta-endorphin and met-enkephalin. By using a combination of a standard 51Cr release and soft agarose single cell analysis assays, beta-endorphin increased both the number of E:T cell conjugates and the number of active killer cells among target-binding cells. The maximal effector cell recycling capacity was increased by 170%. These studies provide new insight into the mechanisms by which neuropeptides produced by the nervous system can alter immune responsiveness.  相似文献   

14.
The effect of clonidine, a central alpha-adrenergic agonist, on the suppression of LH release induced by beta-endorphin or FK33-824, an endogenous opioid peptide or its synthetic analog, was investigated in castrated male rats, with or without pretreatment with reserpine. Pulsatile LH secretion was inhibited by intravenous injection of FK33-824 (400 micrograms/kg), or intraventricular injection of beta-endorphin (5 micrograms). Without pretreatment with reserpine, intraperitoneal administration of clonidine (1 mg/kg) failed to reverse the inhibition of LH release induced by these peptides. However, with pretreatment with reserpine (10 mg/kg), clonidine abolished the inhibitory effect on LH secretion induced by these peptides in castrated male rats. These data indicate that, unlike the results in ovariectomized, steroid-primed rats, pretreatment with reserpine allows the alpha-adrenergic system to act more peripherally than the opioid neuronal system in a neuronal network-regulating LH release in castrated male rats.  相似文献   

15.
Chlorpropamide-alcohol flushing may be due to sensitivity to endogenous opiates. To investigate this possibility the plasma met-enkephalin and beta-endorphin responses to sherry with and without chlorpropamide were studied in six patients with non-insulin dependent diabetes and in six normal subjects. After chlorpropamide all patients showed a rise in met-enkephalin concentrations from a basal level of 50 +/- 7.2 ng/l to a peak of 75 +/- 8.1 ng/l (p less than 0.001). In contrast, before chlorpropamide treatment was started met-enkephalin values did not change after alcohol. No significant changes in beta-endorphin values were observed. In six normal subjects pretreated with chlorpropamide the met-enkephalin concentration also rose from a basal level of 72 +/- 15 ng/l to a peak of 103 +/- 9.4 ng/l (p less than 0.002). Again, the met-enkephalin rise was not observed after placebo. Neither beta-endorphin concentrations nor facial temperature changed significantly. These data suggest that endogenous opiates may be implicated in CPAF. Furthermore, this is the first study in which a significant change in circulating met-enkephalin values has occurred.  相似文献   

16.
The effects of intravenous or intraventricular injection of synthetic ovine corticotrophin-releasing factor (oCRF) on plasma levels of anterior pituitary hormones were studied in conscious, ovariectomized (OVX) female rats and compared with the actions of the peptide on dispersed anterior pituitary cells from OVX female rats incubated in the presence of CRF. Third ventricular injection of oCRF in freely moving rats caused a significant increase in plasma levels of ACTH in a dose-related manner with a minimal effective dose of less than 0.5 micrograms (0.1 nmol). The effect was observable at 5 min after injection and persisted for the 60 min duration of the experiment. In contrast, growth hormone levels were significantly depressed within 15 min with a minimal effective intraventricular dose of 0.5 micrograms. The suppression persisted for the duration of the experiment but there was no additional effect of the higher dose of 5 micrograms. Plasma LH levels were also lowered by the highest dose of 5 micrograms (1.0 nmol) of oCRF, with the first significant lowering at 30 min. Lower doses had no effect on plasma LH. Plasma TSH levels were not significantly altered. Control injections of the 0.9% NaCl diluent were without effect on the levels of any of the hormones. Intravenous injection of similar doses of oCRF had no effect on plasma levels of GH or LH. The ACTH-releasing action of the oCRF preparation was confirmed by in vitro incubation of the peptide with dispersed anterior pituitary cells for 2 h. A dose-related release of ACTH occurred in doses ranging from 0.1-10 nM, but there were no effects on the release of the other anterior pituitary hormones. The results suggest that oCRF may act within the hypothalamus to suppress the release of GH and to a lesser extent LH. The stimulation of ACTH release following intraventricular CRF is presumably related to its uptake by portal blood vessels with delivery to the pituitary and stimulation of the corticotrophs.  相似文献   

17.
The effects of substance P and met5-enkephalin in dog ileum   总被引:1,自引:0,他引:1  
Substance P initiated tonic contraction of dog ileum when administered in doses from 1 pg to 20 micrograms intraarterially (ED50 = 67 ng). Low doses acted to excite cholinergic postganglionic neurones since atropine or tetrodotoxin (TTX) increased the ED50 of substance P about 25-fold, while hexamethonium and local field stimulation had only a small effect to increase the ED50. Also atropine and tetrodotoxin effects were not additive. Higher doses apparently acted to stimulate smooth muscle directly, but no evidence was obtained that local field stimulation could release substance P to act on smooth muscle. Substance P tachyphylaxis prevented substance P actions on cholinergic nerves, but it did not affect responses to intraaterial acetylcholine or block distal inhibition from proximal distention or field stimulation. Met-enkephalin given intraarterially, was also excitatory in doses from 1 ng to 20 micrograms; the amplitude of tonic and phasic contractions produced was significantly decreased by TTX and atropine but was not diminished by hexamethonium or substance P tachyphylaxis. Partial tachyphylaxis to met-enkephalin was produced but was not diminished by hexamethonium or substance P tachyphylaxis. Partial tachyphylaxis to met-enkephalin was produced without affecting the ED50 for substance P. We conclude that substance P acts in small amounts on receptors in myenteric nerves to release acetylcholine by a mechanism, presumably involving postganglionic cholinergic nerves, while met-enkephalin also apparently may act at least in part through a similar TTX- and atropine-sensitive mechanism. These peptides also caused activation of other receptors, probably on smooth muscle by noncholinergic. TTX-insensitive mechanisms. Also the receptors for each peptide which are located on nerves were distinct and independent since tachyphylaxis could be produced to each without affecting the response to the other.  相似文献   

18.
目的:观察足底注射甲醛引起的外周组织炎性疼痛是否可诱导大鼠脊髓血红素氧合酶-1(HO-1)表达发生改变以及变化的时程特征。方法:健康雄性SD大鼠随机分为7组(n=6):对照组(control组)、甲醛6 h组(F6 h组)、甲醛12 h(F12 h组)、甲醛1 d组(F1 d组)、甲醛2 d组(F2 d组)、甲醛3 d组(F3 d组)和甲醛7 d组(F7 d组)。采用足底注射甲醛溶液复制炎性痛模型,采用免疫组织化学方法检测左、右两侧脊髓后角以及中央管周围灰质HO-1蛋白的表达。结果:Control组大鼠HO-1免疫反应阳性细胞在脊髓后角及中央管周围灰质仅有少量分布,且这些细胞染色较浅。足底注射甲醛后6 h,L5节段双侧脊髓后角和中央管周围灰质HO-1免疫反应阳性细胞数目即有所增多,足底注射甲醛后12 h时,双侧脊髓后角和中央管周围灰质HO-1免疫反应阳性细胞数目进一步增多,阳性细胞染色明显加深,1 d时阳性细胞数目和染色深度均达到高峰,7 d时仍高于control组水平。各时间点双侧脊髓后角比较,阳性细胞数目和阳性细胞染色深度均无明显差异。结论:大鼠足底注射甲醛引起的炎性痛可诱导双侧脊髓后角和中央管周围灰质HO-1表达增多,以注射甲醛后1 d时增多最为明显。  相似文献   

19.
It was shown, that stress increased the level of ACTH, beta-endorphin and corticosterone in the blood plasma of the rat. Injection of ethanol (1 g/kg) decreased the level of ACTH, but increased the levels of beta-endorphin in the rat subjected to immobilization stress. The immobilization lowered the levels of met-enkephalin in the striatum and medulla oblongata, but increased the content of neuropeptide in the adrenal glands. The concentration of leu-enkephalin and DSIP remained unchanged following the stress. Ethanol reversed the action of immobilization on the level of met-enkephalin in the striatum, but increased the content of DSIP in the thalamus. These results indicate that ethanol modified the activity of pituitary-adrenal-axis during stress and probably the stress-protective action of ethanol partly performed with the involvement of DSIP.  相似文献   

20.
alpha-MSH and beta-endorphin, both synthesized from a common precursor, have opposite behavioral actions. In order to determine if these peptides have opposite effects on pituitary function, basal LH secretion and basal and stress-induced prolactin release were studied in adult male rats after intraventricular injection of alpha-MSH. Each rat also received intraventricular saline in order to serve as its own control. 18 micrograms alpha-MSH stimulated plasma LH from 16.5 +/- 2.5 (SEM) ng/ml to a peak of 27.2 +/- 4.0 and 26.0 +/- 4.9 ng/ml at 5 and 10 min, and suppressed prolactin from 3.5 +/- 0.7 ng/ml to 1.3 +/- 0.1 and 1.2 +/- 0.1 ng/ml at 15 and 30 min. Intraventricular alpha-MSH also significantly blunted the prolactin rise associated with the stress of swimming. 10 and 20 min after the onset of swimming, prolactin levels in rats pretreated with alpha-MSH were significantly diminished: 7.4 +/- 1.5 and 6.5 +/- 2.0 ng/ml vs 23.8 +/- 3.6 and 15.2 +/- 2.8 after normal saline. Similarly, des-acetyl alpha-MSH which is the predominant form of alpha-MSH in the hypothalamus, diminished the stress-induced prolactin rise from 18.4 +/- 5.3 and 11.2 +/- 3.4 ng/ml at 10 and 20 min to 10.0 +/- 2.4 and 5.5 +/- 1.6 ng/ml. We conclude that centrally administered alpha-MSH stimulates LH and suppresses basal and stress-induced prolactin release in male rats. These actions are opposite to those previously shown for beta-endorphin and suggest that alpha-MSH may antagonize the effects of beta-endorphin on pituitary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号