首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Changes in outward potassium current occurring in response to changes in the concentration of potassium ions in the extracellular medium were investigated in unidentified neurons isolated fromHelix pomatia using an intracellular perfusion technique. It was found that introducing potassium ions (5–10 mM) into the extracellular solution produces a reversible increase in the component of outward potassium current which is dependent on extracellular calcium ions. Increased amplitude of this component occurs as a result of attenuated inactivation of the current under the action of extracellular potassium.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 351–356, May–June, 1987.  相似文献   

2.
Martynyuk  A. E.  Teslenko  V. I. 《Neurophysiology》1988,20(5):436-442
A. A. Bogomolets Institute of Physiology and Institute for Theoretical Physics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 602–610, September–October, 1988.  相似文献   

3.
Summary The outward potassium current of rat cerebellar granule cells in culture was studied with the whole-cell patch-clamp method. Two voltage-dependent components were identified: a slow current, resembling the classical delayed rectifier current, and a fast component, similar to anI A-type current. The slow current was insensitive to 4-aminopyridine and independent of external Ca2+, but significantly inhibited by 3mM tetraethylammonium. The fast current was depressed by external 4-aminopyridine, with an ED50=0.7mM, and it was abolished by removal of divalent cations from the external medium. The sensitivity of the transient outward current to different divalent cations was investigated by equimolar substitution of Ca2+, Mn2+ and Mg2+. In 2.8mM Mn2+, the transient potassium conductance was comparable to that in 2.8mM Ca2+, while in 2.8mM Mg2+ the transient component was drastically reduced, as in the absence of any divalent cations. However, when Ca2+ was present, Mg2+ up to 5mM had no effect. The transient current increased with increasing concentrations of external Ca2+, [Ca2+] o , and the maximum conductancevs. [Ca2+] o curve could be approximated by a one-site model. In addition, the current recorded with 5.5mM BAPTA in the intracellular solution was not different from that recorded in the absence of any Ca2+ buffer. These results suggest that divalent cations modulate the potassium channel interacting with a site on the external side of the cell membrane.  相似文献   

4.
Currents through delayed rectifier-type K+ channels in Schwann cells cultured from rabbit sciatic nerve were studied with patch-clamp techniques. When the internal and external solutions contained physiological concentrations of sodium, the amplitude of these outward currents declined as the cell was depolarized to potentials above about +40 mV, despite the increased driving force. This reduction in the amplitude of outward K+ currents was observed in many cells before the subtraction of leakage currents; it was also observed for ensemble currents recorded in outside-out patches. It was therefore not the result of a leak-subtraction artefact nor of inadequate voltage-clamp control. Several lines of evidence also suggested that it was not the result of the extracellular accumulation of K+. By contrast, when the Na+ ion concentration of the internal solution was nominally zero, the reduction in the amplitude of outward K+ currents at positive membrane potentials was not observed. The apparent amplitude of single-channel currents through two types of K+ channel was reduced by 30 mM internal Na+, apparently as the result of a rapid 'flickery' block. The results suggest that channel block by internal Na+ is largely responsible for the negative slope conductance seen in current-voltage plots of whole-cell K+ currents at positive membrane potentials. In addition, our analysis of single-channel currents suggests that the current-voltage curve for a delayed rectifier channel in rabbit Schwann cells (in the absence of internal Na+) is roughly linear with internal and external K+ concentrations of 140 mM and 5.6 mM, respectively.  相似文献   

5.
西洛他唑对人心房肌细胞瞬间外向钾电流的影响   总被引:2,自引:0,他引:2  
目的:观察西洛他唑对人心房肌细胞瞬间外向钾电流(Ito1)的影响,探讨该药抗心律失常作用的机制.方法:二步酶解法分离人单个右心房肌细胞,应用全细胞膜片钳技术记录人心房肌细胞Ito1.结果:在保持电位-50 mV和去极化脉冲为 50 mV条件下,30 μmol/L西洛他唑显著降低Ito1,使Ito1幅值由加药前(8.16±0.70)pA/pF降至(4.84±0.60)pA/pF(P<0.01).西洛他唑在1~50 μmol/L范围内呈浓度依赖性的抑制Ito1,1 μmol/L时即产生作用,50 μmol/L时达最大效应(降低51.09%±3.00%),IC50为(13.18±2.60)μmol/L.此外,该药对Ito1的电压依赖性激活和失活曲线以及恢复曲线均无显著影响.结论:本实验结果表明西洛他唑浓度依赖性地阻滞人心房肌细胞的Ito1.  相似文献   

6.
去甲肾上腺素对大鼠肝细胞延迟外向钾电流的影响   总被引:1,自引:0,他引:1  
Cui GY  Li JM  Liu DJ  Cui H 《生理学报》1998,50(2):232-236
目前为止国内外尚未见到有关大鼠肝细胞外向钾电流方面的报道。本文用全细胞膜片宿制技术观察了大鼠肝细胞延迟外向钾电流(Ik)及去甲肾上腺素等对人的影响。实验结果表明,在保持电位-50mV、指令电位+140mV时大鼠肝细胞Ik为2.85±1.21nA。去甲肾上腺素明显降低IK,异丙肾上腺素和乙酰胆碱对IK无影响。  相似文献   

7.
8.
The effect of acidosis on the transient outward K(+) current (I(to)) of rat ventricular myocytes has been investigated using the perforated patch-clamp technique. When the holding potential was -80 mV, depolarizing pulses to potentials positive to -20 mV activated I(to) in subepicardial cells but activated little I(to) in subendocardial cells. Exposure to an acid solution (pH 6.5) had no significant effect on I(to) activated from this holding potential in either subepicardial or subendocardial cells. When the holding potential was -40 mV, acidosis significantly increased I(to) at potentials positive to -20 mV in subepicardial cells but had little effect on I(to) in subendocardial cells. The increase in I(to) in subepicardial cells was inhibited by 10 mM 4-aminopyridine. In subepicardial cells, acidosis caused a +8.57-mV shift in the steady-state inactivation curve. It is concluded that in subepicardial rat ventricular myocytes acidosis increases the amplitude of I(to) as a consequence of a depolarizing shift in the voltage dependence of inactivation.  相似文献   

9.
The action of a raised intracellular pH (pHi) on transmembrane ionic currents was investigated on isolated unidentified neurons ofHelix pomatia under intracellular dialysis and membrane voltage clamping conditions. With a rise in pHi from 7.3 to 9.0 and in the simultaneous presence of an inward calcium current, the outward potassium current was considerably reduced and the current-voltage characteristic curve was shifted toward more positive membrane potential values. The inward calcium current was practically unchanged in this case. If, however, the calcium current was inhibited by the action of cadmium ions, no decrease in the outward current was observed, only a shift of the IK(V) curve toward more positive values of membrane potential. It is suggested that an increase in pHi selectively blocks the Ca-dependent component of the outward potassium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 426–430, July–August, 1982.  相似文献   

10.
The hypoxic cytotoxic effect of chlorpromazine towards E. coli B/r was observed to be dependent on temperature of incubation and irradiation. Increasing the temperature of incubation from ambient to 37 degrees C followed by irradiation revealed that the organisms showed radiosensitivity of a magnitude which was two to three times the oxygen effect. The possible mechanisms of this effect are discussed.  相似文献   

11.
It has been shown that inhibition of potassium current through latrotoxin channels by calcium ions is followed by electrostatic interaction of these ions with a total charge on the mouth of the channel.  相似文献   

12.
The slow outward current (IK2) recorded in crab muscle fibre using the double sucrose gap method decreases when high and maintained depolarizations are applied. This decrease corresponds to a true inactivation of the potassium conductance rather than to a shift in the reversal potential of the charge carrying ion following local accumulation.  相似文献   

13.
Changes in the characteristics of activity of sodium, calcium, and potassium channels in the surface membrane during variation of the calcium ion concentration in the extracellular and intracellular medium were investigated by the voltage clamp method during intracellular dialysis of isolated neurons of the mollusksLimnea stagnalis andHelix pomatia. Besides their direct role in passage of the current through the membrane, calcium ions were shown to have two actions, differing in their mechanism, on the functional properties of this membrane. The first was caused by the electrostatic action of calcium ions on the outer surface of the membrane and was manifested as a shift of the potential-dependent characteristics of the ion transport channels along the potential axis; the second is determined by closer interaction of calcium ions with the specific structures of the channels. During the action of calcium-chelating agents EGTA and EDTA on the inner side of the membrane the conductivity of the potassium channels is substantially reduced. With an increase in the intracellular free calcium concentration the conductivity is partially restored. The action of EGTA and EDTA on the outer side of the membrane causes a substantial decrease in the ion selectivity of the calcium channels and changes the kinetics of the portal mechanism. These changes are easily abolished by rinsing off the chelating agents or by returning calcium ions to the external medium. A specific blocking action of an increase in the intracellular free calcium concentration on conductivity of the calcium channels was found.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 69–77, January–February, 1977.  相似文献   

14.
The effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera were studied by using the patch clamp techniques. The results showed that before using cyhalothrin (10.5 mmol/L), activation potential was approximately -40 mV, after application of the drug, the activation potential shifted roughly 10 mV to the negative potential direction, so channels can be activated more easily. Before and after cyhalothrin application, the change of current amplitude was insignificant. The value of V1/2 and k of activation curves did not change significantly, however, the V1/2 of the inactivation curves changed significantly. Inactivation curves significantly shifted to a negative direction, so that inactivation of the channels was hastened. It is indicated that there may exit a primary way in which cyhalothrin provides neurotoxicity to the nervous system through the regulation of activation potentials and inactivation state of IA channels.  相似文献   

15.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

16.
17.
目的:研究银杏苦内酯B对正常和缺血心室肌细胞动作电位(action potential,AP),L-型钙电流(L-type calcium current,ICa-L)、延迟整流钾电流(Delayed Rectifier Currennt,IK)的影响.方法:用常规细胞内微电极方法记录豚鼠心室肌细胞动作电位,用全细胞膜片钳技术记录游离心室肌细胞离子流.结果:①在生理条件下,银杏苦内酯B可缩短心室肌细胞动作电位时程 (action potential duration,APD),但对AP其他参数无影响,银杏苦内酯B可增大IK,呈浓度依赖性,但对ICa-L无显著作用;②在缺血条件下,APD50、APD90明显缩短,RP、APA减小,Vmax减慢,而银杏苦内酯B则可延缓和减轻缺血所引起上述参数的变化;3.在缺血条件下,IK和ICa-L均受到抑制,但加入银杏苦内酯B后可逆转缺血所造成这两种离子流的减小.结论:银杏苦内酯B可对抗心肌缺血所引起的心肌电生理的变化,提示银杏苦内酯B可预防心律失常的发生.  相似文献   

18.
Potassium currents through the somatic membrane of giant neurons ofHelix pomatia in normal (10 mM Ca) Ringer's solution and low-calcium (1 mM Ca) solution were studied by the voltage clamp method. With a decrease in the Ca concentration to 1 mM peak potassium conductance versus membrane, potential curves and inactivation curves were shifted along the voltage axis in the negative direction by about 10 mV. Inactivation of the delayed potassium current was slowed in low Ca solution. The effect of a decrease in external calcium concentration on volt-ampere and inactivation characteristics increased with a rise in external pH. These effects of a low Ca concentration on potassium mechanisms of the giant neuron somatic membrane can be attributed to changes in the negative surface potential in the region of the potassium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Biology, Hungarian Academy of Sciences, Tihany. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 400–409, July–August, 1976.  相似文献   

19.
Jin HW  Zhang W  Qu LT  Wang XL 《生理学报》2003,55(6):711-716
本研究比较了转染的Kv4.2钾电流与原代培养大鼠海马神经元上瞬间外向钾电流(IA)动力学特征。实验采用瞬时转染,细胞培养和全细胞膜片钳记录等方法。结果表明:转染的Kv4.2通道电流和海马神经元上IA均具有明显的A型电流特征。海马神经元IA的半数最大激活电位和斜率因子分别为-10.0±3.3 mV和13.9±2.6 mV;半数最大失活电位和斜率因子分别为-93.0±11.4 mV和-9.0±1.5 mV;失活后再激活恢复时间常数(T)为27.9±14.1 ms。Kv4.2的半数最大激活电位和斜率因子分别为-9.7±4.1 mV和15.8±5.7 mV;半数最大失活电位和斜率因子分别为-59.4±12.2 mV和8.0±3.1 mV;Kv4.2的灭活后再激活的恢复时间常数τ为172.8±10.0 ms。结果提示:Kv4.2通道电流可能是海马神经元上的IA电流的主要成分,但不是唯一成分。  相似文献   

20.
1.  The effect of outward and inward water flows through the membrane on outward potassium currents of dialyzedHelix pomatia neurons was studied.
2.  An outward water flow increased the peak and sustained outward potassium currents and accelerated the kinetics of their activation. An inward water flow had quite opposite effects—it decreased the peak and sustained potassium currents and delayed the kinetics of their activation.
3.  The analysis of the effect of water flow on the conductance of potassium channels showed that an outward water flow increased both the potassium conductance at a given potential (gk) and the maximum potassium conductance (g k max ). An inward water flow again had the opposite effect—it decreased the potassium conductance at given potential and the maximum potassium conductance.
4.  Neither an outward nor an inward water flow significantly affected the fraction of open potassium channels at a given potential [n (V)].
5.  These data suggest that in dialyzed neurons the changes of outward potassium current during water flow through the membrane are due mainly to the changes in single-channel conductance and the time constant of current activation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号