首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

2.
The changes in the free energy of the denatured state of a set of yeast iso-1-cytochrome c variants with single surface histidine residues have been measured in 3 M guanidine hydrochloride. The thermodynamics of unfolding by guanidine hydrochloride is also reported. All variants have decreased stability relative to the wild-type protein. The free energy of the denatured state was determined in 3 M guanidine hydrochloride by evaluating the strength of heme-histidine ligation through determination of the pK(a) for loss of histidine binding to the heme. The data are corrected for the presence of the N-terminal amino group which also ligates to the heme under similar solution conditions. Significant deviations from random coil behavior are observed. Relative to a variant with a single histidine at position 26, residual structure of the order of -1.0 to -2.5 kcal/mol is seen for the other variants studied. The data explain the slower folding of yeast iso-1-cytochrome c relative to the horse protein. The greater number of histidines and the greater strength of ligation are expected to slow conversion of the histidine-misligated forms to the obligatory aquo-heme intermediate during the ligand exchange phase of folding. The particularly strong association of histidine residues at positions 54 and 89 may indicate regions of the protein with strong energetic propensities to collapse against the heme during early folding events, consistent with available data in the literature on early folding events for cytochrome c.  相似文献   

3.
Redzic JS  Bowler BE 《Biochemistry》2005,44(8):2900-2908
Cooperativity mediated through hydrogen bond networks in yeast iso-1-cytochrome c was studied using a thermodynamic triple mutant cycle. Three known stabilizing mutations, Asn 26 to His, Asn 52 to Ile, and Tyr 67 to Phe, were used to construct the triple mutant cycle. The side chain of His 26, a wild-type residue, forms two hydrogen bonds that bridge two substructures of the wild-type protein, and Tyr 67 and Asn 52 are part of an extensive buried hydrogen bond network. The stabilities of all variants in the triple mutant cycle were determined by guanidine hydrochloride denaturation methods and used to determine the pairwise, Delta(2)G(int), and triple interaction energies. His 26 and Ile 52 interact cooperatively (Delta(2)G(int) is 1-2 kcal/mol), whereas the two other pairs of mutations interact anticooperatively (Delta(2)G(int) is -0.5 to -1.5 kcal/mol). Previously reported structural data for iso-1-cytochrome c variants containing these mutations show that changes in the strength of the His 26 to Glu 44 hydrogen bond, apparently caused by changes in main chain dynamics, provide a mechanism for the long distance (His 26 to Phe 67 and His 26 to Ile 52) propagation of pairwise interaction energies. Opposing changes in the strength of the His 26 to Glu 44 hydrogen bond caused by the N52I and Y67F mutations generate a negative triple interaction energy (-0.9 +/-0.7 kcal/mol) that combined with cancellation of cooperative and anticooperative pairwise interactions produce apparent additivity for the stabilizing effects of the single mutations in the triple mutant variant.  相似文献   

4.
L C Wood  T B White  L Ramdas  B T Nall 《Biochemistry》1988,27(23):8562-8568
As a test of the proline isomerization model, we have used oligonucleotide site-directed mutagenesis to construct a mutant form of iso-2-cytochrome c in which proline-76 is replaced by glycine [Wood, L. C., Muthukrishnan, K., White, T. B., Ramdas, L., & Nall, B. T. (1988) Biochemistry (preceding paper in this issue)]. For the oxidized form of Gly-76 iso-2, an estimate of stability by guanidine hydrochloride induced unfolding indicates that the mutation destabilizes the protein by 1.2 kcal/mol under standard conditions of neutral pH and 20 degrees C (delta G degrees u = 3.8 kcal/mol for normal Pro-76 iso-2 versus 2.6 kcal/mol for Gly-76 iso-2). The kinetics of folding/unfolding have been monitored by fluorescence changes throughout the transition region using stopped-flow mixing. The rates for fast and slow fluorescence-detected refolding are unchanged, while fast unfolding is increased in rate 3-fold in the mutant protein compared to normal iso-2. A new kinetic phase in the 1-s time range is observed in fluorescence-detected unfolding of the mutant protein. The presence of the new phase is correlated with the presence of species with an altered folded conformation in the initial conditions, suggesting assignment of the phase to unfolding of this species. The fluorescence-detected and absorbance-detected slow folding phases have been monitored as a function of final pH by manual mixing between pH 5.5 and 8 (0.3 M guanidine hydrochloride, 20 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A double mutant cycle has been used to evaluate interaction energies between the global stabilizer mutation asparagine 52 --> isoleucine (N52I) in iso-1-cytochrome c and mutations producing single surface histidines at positions 26, 33, 39, 54, 73, 89, and 100. These histidine mutation sites are distributed through the four cooperative folding units of cytochrome c. The double mutant cycle starts with the iso-1-cytochrome c variant AcTM, a variant with no surface histidines and with asparagine at position 52. Isoleucine is added singly at position 52, AcTMI52 variant, as are the surface histidines, AcHX variants, where X indicates the histidine sequence position. The double mutant variants, AcHXI52, provide the remaining corner of the double mutant cycle. The stabilities of all variants were determined by guanidine hydrochloride denaturation and interaction energies were calculated between position 52 and each histidine site. Six of the seven double mutants show additive (AcH33I52, AcH39I52, AcH54I52, AcH89I52, and AcH100I52) stability effects or weak interaction energies (AcH73I52) of the histidine mutations and the N52I mutation, consistent with cooperative effects on protein folding and stability being sparsely distributed through the protein structure. The AcH26I52 variant shows a strong favorable interaction energy, 2.0 +/- 0.5 kcal/mol, between the N52I mutation in one substructure and the addition of His 26 to an adjacent substructure. The data are consistent with an entropic stabilization of the intersubstructure hydrogen bond between His 26 and Glu 44 by the Ile 52 mutation.  相似文献   

6.
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.  相似文献   

7.
Fluorescence resonance energy transfer methods have been used to evaluate changes in the dimension of the denatured state for position 73 variants of iso-1-cytochrome c that show a reverse hydrophobic effect [Herrmann et al. (1995)]. The experiments take advantage of the Trp 59/heme donor-acceptor pair in cytochrome c. Two large aliphatic variants, Ile 73 and Leu 73, were compared directly to the wild-type protein (lysine 73). The Leu 73 was an outlier in the original work and serves as an internal control. The data show that the volume of the denatured state is contracted by a small but significant degree, 4-6%, for the Ile 73 variant whereas the Leu 73, which does not conform to the reverse hydrophobic effect, shows no significant compaction. Given that position 73 is beyond Trp 59 in the sequence, the denatured state compaction appears to be a global effect.  相似文献   

8.
The unfolding of ribonuclease A by urea, guanidine hydrochloride, lithium perchlorate, lithium chloride, and lithium bromide has been followed by circular dichroic and difference spectral measurements. All three abnormal tyrosyl residues are normalized in urea and guanidine hydrochloride (delta epsilon 287 = -2700), only two are normalized in lithium bromide and lithium perchlorate (delta epsilon 287 = -1700), and only one is exposed in lithium chloride solutions (delta epsilon 287 = -700). The Gibbs energies are 4.7 +/- 0.1 kcal mol-1 for urea- and guanidine hydrochloride-denaturation, 3.8 +/- 0.2 kcal mol-1 for lithium perchlorate-denaturation, and 12.7 +/- 0.2 kcal mol-1 for lithium chloride- and lithium bromide-denaturation of ribonuclease A. The latter results suggest that the mechanism of the unfolding process in urea and guanidine hydrochloride is quite different from that in lithium salts.  相似文献   

9.
Absorbance-detected thermal denaturation studies of the C102T variant of Saccharomyces cerevisiae iso-1-ferricytochrome c were performed between pH 3 and 5. Thermal denaturation in this pH range is reversible, shows no concentration dependence, and is consistent with a 2-state model. Values for free energy (delta GD), enthalpy (delta HD), and entropy (delta SD) of denaturation were determined as functions of pH and temperature. The value of delta GD at 300 K, pH 4.6, is 5.1 +/- 0.3 kcal mol-1. The change in molar heat capacity upon denaturation (delta Cp), determined by the temperature dependence of delta HD as a function of pH (1.37 +/- 0.06 kcal mol-1 K-1), agrees with the value determined by differential scanning calorimetry. pH-dependent changes in the Soret region indicate that a group or groups in the heme environment of the denatured protein, probably 1 or both heme propionates, ionize with a pK near 4. The C102T variant exhibits both enthalpy and entropy convergence with a delta HD of 1.30 kcal mol-1 residue-1 at 373.6 K and a delta SD of 4.24 cal mol-1 K-1 residue-1 at 385.2 K. These values agree with those for other single-domain, globular proteins.  相似文献   

10.
Hydrophilic to hydrophobic mutations have been made at 11 solvent exposed sites on the surface of iso-1-cytochrome c. Most of these mutations involve the replacement of lysine with methionine, which is nearly isosteric with lysine. Minimal perturbation to the native structure is expected, and this expectation is confirmed by infrared amide I spectroscopy. Guanidine hydrochloride denaturation studies demonstrate that these variants affect the magnitude of the m-value, the rate of change of free energy with respect to denaturant concentration, to different degrees. Changes in m-values are indicative of changes in the equilibrium folding mechanism of a protein. Decreases in m-values are normally thought to result either from an increased population of intermediates during unfolding or from a more compact denatured state. When cytochrome c is considered in terms of its thermodynamic substructures, the changes in the m-value for a given variant appear to depend upon the substructure in which the mutation is made. These data indicate that the relative stabilities and physical properties of substructures of cytochrome c play an important determining role in the equilibrium folding mechanism of this protein.  相似文献   

11.
Kristinsson R  Bowler BE 《Biochemistry》2005,44(7):2349-2359
Thermodynamic communication between protein substructures has been investigated by determining the stabilizing effect of mutations at position 52 in the least stable, N-yellow, substructure of cytochrome c on the second least stable, Red, and most stable, Blue, substructures of the protein. A Lys 73 --> His (H73) variant of iso-1-cytochrome c, containing these mutations was used to measure the stability of the Red substructure of cytochrome c through the pH and guanidine hydrochloride (gdnHCl) dependence of the His 73-mediated alkaline conformational transition. The stability of the Blue substructure was measured by global unfolding with gdnHCl and increased by 1 to 3.5 kcal/mol versus the H73 variant. The data demonstrate that the increase in stability of the Red substructure is similar to the increase in global stability, consistent with upward propagation of stabilizing energy from less (N-yellow) to more stable (Red and Blue) protein substructures. The result also supports sequential rather than independent unfolding of the N-yellow and Red substructures of cytochrome c. The data indicate that a leucine at position 52 alters the nature of partial unfolding of the Red substructure, a surprising effect for a single-site mutation. For all variants, the thermodynamics of formation of the Lys 79 alkaline state, which does not unfold the entire Red substructure, shows less stabilization of the portion of the protein unfolded relative to the stabilization of the Blue substructure, indicating that propagation of energy between substructures is somewhat disrupted when unfolding does not correspond to a natural substructure.  相似文献   

12.
The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 +/- 0.4 kcal.mol-1, while a lower value (6.4 +/- 0.4 kcal.mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 +/- 0.3 kcal.mol-1 and 4.8 +/- 0.3 kcal.mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL.mol-1 for Ile7Ser and -55 mL.mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins.  相似文献   

13.
S F Betz  G J Pielak 《Biochemistry》1992,31(49):12337-12344
We introduced a novel disulfide bond, modeled on that of bullfrog cytochrome c, into yeast iso-1-cytochrome c. The disulfide spontaneously forms upon purification. A variety of techniques were used to examine the denaturation of this variant and several non-cross-linked controls. Denaturation is reversible and, with the exception of the protein in which the two cysteines are blocked, consistent with a two-state process. Comparison of the calorimetric and van't Hoff enthalpy changes indicates that denaturation is two-state at pH 4.6. Calorimetric and fluorescence-monitored guanidine hydrochloride (GdnHCl) denaturation data indicate that the free energy of denaturation for the cross-linked protein (delta Gd at 300 K) is decreased relative to non-cross-linked controls. The dependence of delta Gd on GdnHCl concentration, the GdnHCl concentration that denatures half the protein, as well as the enthalpy, entropy, and heat capacity changes (mGdnHCl, Cm, delta Hd, delta Sd, and delta Cp, respectively), all decrease in magnitude upon introduction of the cross-link. The decrease in delta Hd and delta Sd were confirmed by monitoring absorbance at several wavelengths as a function of temperature. The cross-link also decreases the pH dependence of these observables. Circular dichroism studies indicate the denatured state of the cross-linked protein possesses more structure than non-cross-linked proteins, and this structure is refractory to increases in temperature and chemical denaturant. We conclude that the diminished values of delta Gd, delta Hd, delta Sd, delta Cp, and mGdnHCl result from the denatured state of the cross-linked variant being more compact and possessing more structure than non-cross-linked controls.  相似文献   

14.
We have examined the chemical denaturations of the Klentaq and Klenow large-fragment domains of the Type 1 DNA polymerases from Thermus aquaticus (Klentaq) and Escherichia coli (Klenow) under identical solution conditions in order to directly compare the stabilization energetics of the two proteins. The high temperature stability of Taq DNA polymerase is common knowledge, and is the basis of its use in the polymerase chain reaction. This study, however, is aimed at understanding the thermodynamic basis for this high-temperature stability. Chemical denaturations with guanidine hydrochloride report a folding free energy (DeltaG) for Klentaq that is over 20 kcal/mol more favorable than that for Klenow under the conditions examined. This difference between the stabilization free energies of a homologous mesophilic-thermophilic protein pair is significantly larger than generally observed. This is due in part to the fact that the stabilization free energy for Klentaq polymerase, at 27.5 kcal/mol, is one of the largest ever determined for a monomeric protein. Large differences in the chemical midpoints of the unfolding (Cm) and the dependences of the unfolding free energy on denaturant concentration in the transition region (m-value) between the two proteins are also observed. Measurements of the sedimentation coefficients of the two proteins in the native and denatured states report that both proteins approximately double in hydrodynamic size upon denaturation, but that Klentaq expands somewhat more than Klenow.  相似文献   

15.
Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme.  相似文献   

16.
Khan MK  Miller AL  Bowler BE 《Biochemistry》2012,51(17):3586-3595
We use a host-guest approach to evaluate the effect of Trp guest residues relative to Ala on the kinetics and thermodynamics of formation of His-heme loops in the denatured state of iso-1-cytochrome c at 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). Trp guest residues are inserted into an alanine-rich segment placed after a unique His near the N-terminus of iso-1-cytochrome c. Trp guest residues are either 4 or 10 residues from the His end of the 28-residue loop. We find the guest Trp stabilizes the His-heme loop at all GdnHCl concentrations when it is the 4th, but not the 10th, residue from the His end of the loop. Thus, residues near loop ends are most important in developing topological constraints in the denatured state that affect protein folding. In 1.5 M GdnHCl, the loop stabilization is ~0.7 kcal/mol, providing a thermodynamic rationale for the observation that Trp often mediates residual structure in the denatured state. Measurement of loop breakage rate constants, k(b,His), indicates that loop stabilization by the Trp guest residues occurs completely after the transition state for loop formation in 6.0 M GdnHCl. Under poorer solvent conditions, approximately half of the stabilization of the loop develops in the transition state, consistent with contacts in the denatured state being energetically downhill and providing evidence for funneling even near the rim of the folding funnel.  相似文献   

17.
Slow refolding kinetics in yeast iso-2 cytochrome c   总被引:1,自引:0,他引:1  
J J Osterhout  B T Nall 《Biochemistry》1985,24(27):7999-8005
  相似文献   

18.
Equilibrium unfolding of barstar with guanidine hydrochloride (GdnHCl) and urea as denaturants as well as thermal unfolding have been carried out as a function of pH using fluorescence, far-UV and near-UV CD, and absorbance as probes. Both GdnHCl-induced and urea-induced denaturation studies at pH 7 show that barstar unfolds through a two-state F<->U mechanism and yields identical values for delta GU, the free energy difference between the fully folded (F) and unfolded (U) forms, of 5.0 +/- 0.5 kcal.mol-1 at 25 degrees C. Thermal denaturation of barstar also follows a two-state F<->U unfolding transition at pH 7, and the value of delta GU at 25 degrees C is similar to that obtained from chemical denaturation. The pH dependence of denaturation by GdnHCl is complex. The Cm value (midpoint of the unfolding transition) has been used as an index for stability in the pH range 2-10, because barstar does not unfold through a two-state transition on denaturation by GdnHCl at all pH values studied. Stability is maximum at pH 2-3, where barstar exists in a molten globule-like form that forms a large soluble oligomer. The stability decreases with an increase in pH to 5, the isoelectric pH of the protein. Above pH 5, the stability increases as the pH is raised to 7. Above pH 8, it again decreases as the pH is raised to 10. The decrease in stability from pH 7 to 5 in wild-type (wt) barstar, which is shown to be characterized by an apparent pKa of 6.2 +/- 0.2, is not observed in H17Q, a His 17-->Gln 17 mutant form of barstar. This decrease in stability has therefore been correlated with the protonation of His 17 in barstar. The decrease in stability beyond pH 8 in wt barstar, which is characterized by an apparent pKa of 9.2 +/- 0.2, is not detected in BSCCAA, the Cys 40 Cys 82-->Ala 40 Ala 82 double mutant form of barstar. Thus, this decrease in stability has been correlated with the deprotonation of at least one of the two cysteines present in wt barstar. The increase in stability from pH 5 to 3 is characterized by an apparent pKa of 4.6 +/- 0.2 for wt barstar and BSCCAA, which is similar to the apparent pKa that characterizes the structural transition leading to the formation of the A form. The use of Cm as an index of stability has been supported by thermal denaturation studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
A Tamura  K Kimura  H Takahara  K Akasaka 《Biochemistry》1991,30(47):11307-11313
Cold denaturation and heat denaturation of the protein Streptomyces subtilisin inhibitor (SSI) were studied in the pH range 1.84-3.21 and in the temperature range -3-70 degrees C by circular dichroism and scanning microcalorimetry. The native structure of the protein was apparently most stabilized at about 20 degrees C and was denatured upon heating and cooling from this temperature. Each denaturation was reversible and cooperative, proceeding in two-state transitions, that is, from the native state to the cold-denatured state or from the native state to the heat-denatured state. The two denatured states, however, were not perfect random-coiled structures, and they differed from each other, indicating that there exist three states in this temperature range, i.e., cold denatured, native, and heat denatured. The difference between the cold and heat denaturations was indicated first by circular dichroism. The isodichroic point for the transition from the native state to the cold-denatured state was different from that from the native state to the heat-denatured state in the pH range between 3.21 and 2.45. Moreover, molar ellipticity for the cold-denatured state was different from that of the heat-denatured state, and the transition from the former to the latter was observed at pH values below 2. Values of van't Hoff enthalpies from the native state to the heat-denatured state at pH values between 3.21 and 2.45 were obtained by curve fitting of the CD data, and delta Cp = 1.82 (+/- 0.11) [kcal/(mol.K)] was obtained from the linear plot of the enthalpies against temperature. The parameters obtained from the heat denaturation studies gave curves for delta G zero which were not in agreement with the experimental data in the cold denaturation region when extrapolated to the low temperature. Moreover, the value of the apparent delta Cp for the cold denaturation in the pH range 3.03-2.45 was estimated to be different from that for the heat denaturation, indicating that the mechanism of the cold denaturation of SSI is different from a simple cold denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A three-state equilibrium unfolding of a protein can be difficult to detect if two of the states fail to differ in some easily measurable way. It has been unclear whether staphylococcal nuclease unfolds in a two-state fashion, with only the native and denatured states significantly populated at equilibrium, or in a three-state manner, with a well-populated intermediate. Since equilibrium unfolding experiments are commonly used to determine protein stability and the course of denaturation are followed by changes in the fluorescence which has difficulty in distinguishing various states, this is a potential problem for many proteins. Over the course of twenty years we have performed more than one hundred guanidine hydrochloride equilibrium denaturations of wild-type staphylococcal nuclease; to our knowledge, a number of denaturations unrivaled in any other protein system. A careful examination of the data from these experiments shows no sign of the behavior predicted by a three-state unfolding model. Specifically, a three-state unfolding should introduce a slight, but characteristic, non-linearity to the plot of stability versus denaturant concentration. The average residuals from this large number of repeated experiments do not show the predicted behavior, casting considerable doubt on the likelihood of a three-state unfolding for the wild-type protein. The methods used for analysis here could be applied to other protein systems to distinguish a two-state from a three-state denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号