首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
-Chymotrypsin was immobilized on chitin from squills, lobsters and prawns by means of glutaraldehyde. Hydrolase and peptide synthetase activities were determined in aqueous and homogeneous aqueous-organic media, respectively.

The results show -chymotrypsin immobilized on chitin from prawn to be the most active immobilized derivative based on its synthetase activity (90% yield of Bz-Tyr-Leu-NH2 in carbonate buffer, pH 9 containing 70% 1,4- butanediol).

The relationship between the kinetic constant of hydrolysis and chitin structure was also studied. -Chymotrypsin immobilized on prawn chitin was found to be the best derivative in kinetic terms.

The stability of the three derivatives was studied at 37C.  相似文献   

2.
The effect of chemical modification of amino acid residues essential for sugar binding in the α-D-galactoside specific jack fruit (Artocarpus integrifolia) seed lectin and the protection of the residues by specific sugar from modification were studied. Citraconylation or maleylation of 75 % of its lysyl residues or acetylation of 70 % of the tyrosyl residues completely abolished sugar binding and agglutination without dissociation of subunits. 1-O-methyl α-D-galactoside could protect its essential lysyl and tyrosyl groups from modification. Tryptophan could not be detected in the protein. Difference absorption spectra on binding of the above sugar confirmed the role of tyrosine residues and showed an association constantK = 0.4 × 103 M−1. Data suggests that the lectin could be immobilized without any loss of sugar binding activity  相似文献   

3.
Triethyloxonium tetrafluoroborate was used to O-alkylate nylon-tube thus producing the imidate salt of the nylon which was further made to react with 1,6-diaminohexane. 2. Hexokinase (EC 2.7.1.1) and glucose 6-phosphate dehydrogenase (EC 1.1.1.49) were immobilized on the amino-substituted nylon tube through glutaraldeyde and bisimidates. 3. The effect of varying the conditions of O-alkylation and the amount of enzyme immobilized on the activity of nylon tube-hexokinase derivatives was determined. 4. The effect of varying the amount of enzyme immobilized on the activity of nylon-tube-glucose 6-phosphate dehydrogenase derivatives was determined. 5. The thermal stability of nylon-tube-hexokinase and nylon-tube-glucose 6-phosphate dehydrogenase derivatives was studied. 6. Different ratios of hexokinase and glucose 6-phosphate dehydrogenase were co-immobilized on nylon tube, and the rate of conversion of glucose into 6-phosphogluconolactone was compared with the individual activities of the immobilized enzymes. 7. Hexokinase and glucose 6-phosphate dehydrogenase co-immobilized on nylon tube were used in the automated analysis of glucose.  相似文献   

4.
Urease was immobilized on O-alkylated nylon tubes coated with polyaminated derivatives of starch or dextran. The specific activity of the enzyme coil and the relative stability of the immobilized enzyme, compared with immobilized urease derived from other nylon tube modifications, were enhanced. Also, the nonspecific binding of urease to O-alkylated nylon tubes was virtually eliminated by the coating process.  相似文献   

5.
A series of chemical modification reactions have been carried out with rabbit pulmonary angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1) in order to identify amino acid residues essential for its catalytic activity. The enzyme is rapidly inactivated by nitration with tetranitromethane and by O-acetylation with N-acetylimidazole. Deacylation with hydroxylamine restores activity to the acetylated enzyme, while the inhibitor, β-phenylpropionyl-L-phenylalanine, protects against acetylimidazole inactivation. These results indicate the presence of functional tyrosyl residues at the active site of the enzyme. Reaction with butanedione decreases activity, an effect that is markedly enhanced by the presence of borate, indicating essential arginyl residues. In addition, activity is diminished by the carboxyl reagent, cyclohexylmorpholinoethyl carbodiimide. Thus, the three functional residues long known to be components of the active site of bovine carboxypeptidase A, tyrosyl, arginyl, and glutamyl, have counterparts in the angiotensin converting enzyme. The effects of pyridoxal phosphate and a number of other reagents demonstrate that the converting enzyme also contains an important lysyl residue.  相似文献   

6.
G G Re  J M Kaper 《Biochemistry》1975,14(20):4492-4497
The chemical accessibility of tyrosyl residues in TYMV capsids was studied by spectrophotometric titration and with the nitrating agent tetranitromethane. That of the lysyl residues was probed with trinitrobenzenesulfonate. Attempts to test their accessibility in virions were also made. Since some of these reactions were accompanied by structural changes, degradation of the particles were monitored with ultracentrifugation and light-scattering measurements. Alkaline titration of TYMV capsids induced ionization of two of the three tyrosyl residues per subunit at pH 11.3, but the third tyrosyl ionized with an apparent pK of 12.65, concomitantly with the degradation of the capsids. Reaction with tetranitromethane suggested that one tyrosyl residue per subunit can easily be nitrated and initiates degradation, after which the remaining residues also react. In intact capsids, five out of seven lysyl residues per subunit reacted readily with trinitrobenzenesulfonate. The other two lysyl residues were trinitrophenylated only after degradation of the capsids. On the other hand, all seven lysyl residues per subunit were easily trinitrophenylated in virions, during which reaction the virions disintegrated. The demonstrated chemical inaccessibility of specific numbers of tyrosyl and lysyl residues in TYMV capsids and the observed structural consequences to the capsids when the residues were made to react are consistent with previously published properties of the cysteinyl and tryptophanyl residues. The findings suggest that in the capsid the central region of the TYMV polypeptide chain is buried and might represent a site of contact between neighboring subunits.  相似文献   

7.
Diethyl pyrocarbonate inactivates Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] by a simple bimolecular reaction. The inactivation is not reversed by hydroxylamine. The pH curve of inactivation indicates the involvement of a residue with a pK of 8.8. Several lines of evidence show that the inactivation is due to the modification of epsilon-amino groups of lysyl residues. Although histidyl residue is also modified, this is not directly correlated to the inactivation. No cysteinyl, tyrosyl, or tryptophyl residue or alpha-amino group is significantly modified. The modification of three lysyl residues per enzyme subunit results in the complete loss of aldolase activity toward various 4-hydroxy-2-oxo acid substrates, whereas oxaloacetate beta-decarboxylase activity associated with the enzyme is not inhibited by this modification. Statistical analysis suggests that only one of the three lysyl residues is essential for activity. l-4-Carboxy-4-hydroxy-2-oxoadipate, a physiological substrate for the enzyme, strongly protects the enzyme against inactivation. Pi as an activator of the enzyme shows no specific protection. The molecular weight of the enzyme, Km for substrate or Mg2+, and activation constant for Pi are virtually unaltered after modification. These results suggest that the modification occurs at or near the active site and that the essential lysyl residue is involved in interaction with the hydroxyl group but not with the oxal group of the substrate.  相似文献   

8.
The parameters involved in immobilization of alkaline protease on nylon using glutaraldehyde as coupling agent and the characteristics of the immobilized enzyme were investigated. Optimum temperature and pH of both free and immobilized enzyme for the degradation of protein was found. Immobilized enzyme showed better thermal stability than the free enzyme. The reusability and storage stability of the immobilized enzyme was also studied.  相似文献   

9.
Summary Rifamycin oxidase, an enzyme used in the biotransformation of rifamycin B to S was immobilized on nylon fibers using glutaraldehyde as the cross linking agent. An activity of 18 U/g of nylon fiber with a binding efficiency of 37% was achieved. The immobilized enzyme showed an operational stability of 7 days and was also protected against thermal inactivation. It exhibited a Km(app.) of 2.0mM.  相似文献   

10.
Lipase from Geobacillus thermocatenulatus (BTL2) was immobilized in two different matrixes. In one derivative, the enzyme was immobilized on agarose activated with cyanogen bromide (CNBr-BTL2) via its most reactive superficial amino group, whereas the other derivative was covalently immobilized on glyoxyl agarose supports (Gx-BTL2). The latter immobilization protocol leads to intense multipoint covalent attachment between the lysine richest region of enzyme and the glyoxyl groups on the support surface. The resulted solid derivatives were unfolded by incubation under high concentrations of guanidine and then resuspended in aqueous media under different experimental conditions. In both CNBr-BTL2 and Gx-BTL2 derivatives, the oxidation of Cys residues during the unfolding/refolding processes led to inefficient folding for the enzyme because only 25-30% of its initial activity was recovered after 3 h in refolding conditions. Dithiothreitol (DTT), a very mild reducing agent, prevented Cys oxidation during the unfolding/refolding process, greatly improving activity recovery in the refolded forms. In parallel, other variables such as pH, buffer composition and the presence of polymers and other additives, had different effects on refolding efficiencies and refolding rates for both derivatives. In the case of solid derivatives of BTL2 immobilized on CNBr-agarose, the surface's chemistry was crucial to guarantee an optimal protein refolding. In this way, uncharged protein vicinities resulted in better refolding efficiencies than those charged ones.  相似文献   

11.
Chemical modifications were used to search for catalytically important residues of rat liver arginase. The results of carbamoylation, nitration and diazotization suggest that lysyl and tyrosyl residues are not involved in the catalytic function of arginase. The modification of 5--6 tryptophanyl residues by N-bromosuccinimide or 2-hydroxy-5-nitrobenzyl bromide led to about 90% inhibition of the enzyme activity. Photooxidation of 21 histydyl residues also led to considerable inactivation of arginase. The modification of tryptophanyl and histidyl residues did not cause dissociation of the enzyme into subunits.  相似文献   

12.
A 96 kDa aminopeptidase was purified from Streptococcus salivarius subsp. thermophilus NCDO 573. The enzyme had similar properties to aminopeptidases isolated from lactococci and lactobacilli and showed a high degree of N -terminal amino acid sequence homology to aminopeptidase N from Lactococcus lactis subsp. cremoris. It catalysed the hydrolysis of a range of aminoacyl 4-nitroanilides and 7-amido-4-methylcoumarin derivatives, dipeptides, tripeptides and oligopeptides. In common with aminopeptidases from other lactic acid bacteria, the enzyme from Strep. salivarius subsp. thermophilus showed highest activity with lysyl derivatives but was also very active with arginyl and leucyl derivatives. Relative activity with alanyl, phenylalanyl, tyrosyl, seryl and valyl derivatives was considerably lower and with glycyl, glutamyl and prolyl derivatives almost negligible. The aminopeptidase also catalysed the hydrolysis of dipeptides and tripeptides but mostly at rates much less than that with L-lysyl-4-nitroanilide and oligopeptides. The enzyme catalysed the successive hydrolysis of various amino acid residues from the N -terminus of several oligopeptides but it was unable to cleave peptide bonds on the N -terminal side of a proline residue.  相似文献   

13.
《Process Biochemistry》2010,45(3):390-398
A novel approach is proposed to prepare a set of immobilized derivatives of a enzyme covalently rigidified through different regions of its surface. Six different variants of penicillin G acylase (PGA) from Escherichia coli (which lacks Cys) were prepared by introducing a unique Cys residue via site-directed mutagenesis in six different enzyme regions which were rich in Lys residues. All variants exhibited a similar activity and stability compared to those of the native enzyme. Each variant was immobilized on supports having a low concentration of reactive disulfide moieties and a high concentration of poorly reactive epoxy groups. After immobilization at pH 7.0 by site-directed thiol-disulfide intermolecular exchange, derivatives were further incubated at pH 10.0 for 48 h to promote an additional intramolecular reaction between Lys residues of enzyme and epoxy groups of the support. The establishment of at least three covalent attachments per PGA molecule was determined for all immobilized enzyme variants. The different derivatives exhibited diverse stability against several distorting agents and different selectivity in two interesting reactions. The derivative of the PGA variant obtained by replacement of GlnB380 by Cys was the most stable against heat and organic cosolvents: it preserved 90% of the initial activity and was 30-fold more stable than soluble PGA. This derivative also exhibited an improved enantioselectivity in the hydrolysis of chiral esters (E was improved from 8 to 16) and in kinetically controlled synthesis of amides (synthetic yields were increased from 31 to 49%).  相似文献   

14.
尼龙网固定化果胶酶的制备及其性质研究   总被引:2,自引:0,他引:2  
用尼龙网作载体,经3-二甲氨基丙胺活化,用戊二醛将果胶酶固定化。所得固定化酶Km值与自然酶接近;对温度的稳定性有较大的提高,100℃保温30min才能使其失活。固定化酶在较宽的pH范围内能保持其正常活力,它对金属离子抑制剂的耐受性有较显著的提高,用0.5%果胶溶液作底物,重复使用10次后酶活力保留44%。固定化果胶酶与自然酶相比较,对不同果汁的澄清效果不同。固定化果胶酶在无保护剂存在的条件下,室温放置四个月活力不减少。  相似文献   

15.
Maleic anhydride modification of tetrameric mouse β-glucuronidase, followed by a 70° incubation, dissociated the tetramer into inactive monomers. Deblocking of this derivative allowed 80% regeneration of activity and tetrameric structure. The enzyme was inactivated by reaction with N-ethyl-S-phenylisoxazolium-3′-sulfonate, tetranitromethane and succinic anhydride, but not when a competitive inhibitor was added to enzyme prior to modification. These data suggest that the active site residues of mouse β-glucuronidase include carboxyl, tyrosyl and lysyl residues. In comparison, it has been reported that rat β-glucuronidase is inactivated by chemical modification of carboxyl, tyrosyl and histidyl residues.  相似文献   

16.
豆壳过氧化物酶的盐酸胍变性与化学修饰研究   总被引:2,自引:0,他引:2  
研究了盐酸胍对豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC1.11.1.7)构象与活力的影响,发现去辅基SHP的盐酸胍变(复)性及荧光变化关系与SHP全酶分子的盐酸胍变(复)性及荧光变化关系明显不同。应用过碘酸氧化法去除SHP分子表面糖链,研究糖链去除对酶性质的影响,则证实了SHP分子表面的糖链去除导致酶热稳定性下降。应用不同的蛋白质侧链修饰剂对SHP进行化学修饰则表明,巯基、酪氨酸和色氨酸残基为酶活力非必需,而羧基、组氨酸和精氨酸残基为酶活力所必需。  相似文献   

17.
To test whether cellular protein kinases exist that phosphorylate D-amino acid residues, a method was developed for separating O-phospho-D-serine from O-phospho-L-serine and O-phospho-L-tyrosine from O-phospho-D-tyrosine. This was accomplished by converting these amino acids to the L-leucyl dipeptide derivatives followed by separation of the diastereomers by anion-exchange high-performance liquid chromatography. The enantiomeric content of these D- and L-residues were measured in hydrolysates of 32P-labeled proteins produced by the protein kinases of human erythrocytes and the tyrosyl protein kinase of the Abelson leukemia virus. We found no measurable D-phosphoserine in erythrocyte membrane proteins under conditions where a 1% content of this residue relative to L-phosphoserine would have been detected. These values can be used to place an upper hypothetical limit on the fraction of erythrocyte protein kinase activity that is specific for serine residues in the D-configuration. In separate experiments, we examined the specificity of the tyrosyl protein kinases. We found that all of the phosphotyrosine that we isolated from the erythrocyte band 3 NH2-terminal fragment and from the autophosphorylation of the Abelson virus tyrosyl kinase was in the L-configuration.  相似文献   

18.
Immobilization of catalase into chemically crosslinked chitosan beads   总被引:8,自引:0,他引:8  
Bovine liver catalase was immobilized into chitosan beads prepared in crosslinking solution. Various characteristics of immobilized catalase such as the pH–activity curve, the temperature–activity curve, thermal stability, operational stability, and storage stability were evaluated. Among them the pH optimum and temperature optimum of free and immobilized catalase were found to be pH 7.0 and 35 °C. The Km value of immobilized catalase (77.5 mM) was higher than that of free enzyme (35 mM). Immobilization decreased in Vmax value from 32,000 to 122 μmol (min mg protein)−1. It was observed that operational, thermal and storage stabilities of the enzyme were increased with immobilization.  相似文献   

19.
Chemical modifications by photooxidation in the presence of rose bengal (RB) and with tetranitromethane (TNM) were carried out to elucidate the amino acid residues involved in the active site of inorganic pyrophosphatase (pyrophosphate phosphohydrolase) [EC 3.6.1.1] from Escherichia coli Q13. The photooxidation caused almost complete inactivation, which followed pseudo-first-order kinetics depending on pH and concentration of RB. The presence of Mg2+ or complex between Mg2+ and substrate or substrate analogues, imidodiphosphate and sodium methylenediphosphate, gave partial protection against the photoinactivation, whereas the substrate alone showed no protective effect. The enzyme was almost completely inactivated by chemical modification with TNM, depending upon the concentration of TNM. The amino acid analyses and enzyme activity measurements revealed that 2 histidyl residues among 5 photooxidized residues and 2 tyrosyl residues per subunit were essential for the enzyme activity. The circular dichroism (CD) spectra in the far ultraviolet region showed no significant alteration during these two modifications, indicating that the polypeptide chain backbone of the enzyme remained unaltered. However, the modifications altered considerably the CD bands in the near ultraviolet region and the fluorescence spectra, indicating that subtle change in conformation had occurred in the vicinity of the active site in the enzyme molecule. These results strongly suggest that histidyl and tyrosyl residues may be involved in the active site or be located in the vicinity of the active site and seem to participate in the mechanism of stability against heat inactivation.  相似文献   

20.
Previous attempts to purify lysyl oxidase have been frustrated by the failure to recover activity during ion exchange or affinity chromatography. We have found that lysyl oxidase from chick cartilage shows marked stability in buffers containing urea and in these solutions can be recovered in high yield from DKAE-cellulose and collagen-derivatized Sepharose. The purified enzyme was active against both collagen and elastin substrates but devoid of monoamine oxidase activity. An absolute requirement for oxygen for activity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号