首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The genetic map of Bremia lactucae was expanded utilizing 97 F(1) progeny derived from a cross between Finnish and Californian isolates (SF5xC82P24). Genetic maps were constructed for each parent utilizing 7 avirulence genes, 83 RFLP markers, and 347 AFLP markers, and a consensus map was constructed from the complete data set. The framework map for SF5 contained 24 linkage groups distributed over 835cM; the map for C82P24 contained 21 linkage groups distributed over 606cM. The consensus map contained 12 linkage groups with markers from both parents and 24 parent-specific groups. Six avirulence genes mapped to different linkage groups; four were located at the ends of linkage groups. The closest linkages between molecular markers and avirulence genes were 3cM to Avr4 and 1cM to Avr7. Mating type seemed to be determined by a single locus, where the heterozygote determined the B(2) type and the homozygous recessive genotype determined the B(1) type.  相似文献   

2.
The first linkage map established by Lanaud et al. (1995) was used as a starting point to produce a high-density molecular linkage map. A mapping population of 181 progenies resulting from a cross between two heterozygous genotypes, a Forastero and a Trinitario (hybrid between Forastero and Criollo), was used for the linkage analysis. A new DNA isolation protocol was established, which allows enough good quality DNA to construct a genetic map with PCR-based markers. The map comprises 424 markers with an average spacing between markers of 2.1 cM. The marker types used were five isozymes, six loci from known function genes, 65 genomic RFLPs, 104 cDNA RFLPs, three telomeric probes, 30 RAPDs, 191 AFLPs and 20 microsatellites. The use of new marker types, AFLP and microsatellites, did not disturb the original order of the RFLP loci used on the previous map. The genetic markers were distributed over ten linkage groups and cover 885.4 cM. The maximum distance observed between adjacent markers was 16.2 cM, and 9.4% of all loci showed skewed segregation. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

3.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

4.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

5.
Two cDNA probes for the porcine calcium release channel gene (CRC) were used in restriction fragment length polymorphism (RFLP) analysis in an attempt to develop genetic markers linked to the malignant hyperthermia (stress susceptibility) gene (HAL). Three TaqI RFLPs, denoted CRC1-CRC3, each composed of two alleles, were detected. RFLPs were also detected with MspI and PvuII, but the MspI RFLP correlated completely with CRC3 in this material and the PvuII RFLP could not be scored reliably due to a minute size difference between the two allelic fragments. The autosomal codominant inheritance of these RFLP loci was confirmed by family analyses. Significant evidence for genetic linkage between the CRC1/CRC3 loci and the A1BG locus in the HAL linkage group confirmed a previous assignment of the CRC gene to chromosome 6 in the pig.  相似文献   

6.
A linkage map of restriction fragment length polymorphisms (RFLPs) was constructed for oilseed, Brassica rapa, using anonymous genomic DNA and cDNA clones from Brassica and cloned genes from the crucifer Arabidopsis thaliana. We also mapped genes controlling the simply inherited traits, yellow seeds, low seed erucic acid, and pubescence. The map included 139 RFLP loci organized into ten linkage groups (LGs) and one small group covering 1785 cM. Each of the three traits mapped to a single locus on three different LGs. Many of the RFLP loci were detected with the same set of probes used to construct maps in the diploid B. oleracea and the amphidiploid B. napus. Comparisons of the linkage arrangements between the diploid species B. rapa and B. oleracea revealed six LGs with at least two loci in common. Nine of the B. rapa LGs had conserved linkage arrangements with B. napus LGs. The majority of loci in common were in the same order among the three species, although the distances between loci were largest on the B. rapa map. We also compared the genome organization between B. rapa and A. thaliana using RFLP loci detected with 12 cloned genes in the two species and found some evidence for a conservation of the linkage arrangements. This B. rapa map will be used to test for associations between segregation of RFLPs, detected by cloned genes of known function, and traits of interest.  相似文献   

7.
Inheritance and mapping of 11 avirulence genes in Phytophthora sojae   总被引:2,自引:0,他引:2  
Two new crosses involving four races (races 7, 16, 17, and 25) of the soybean root and stem rot pathogen Phytophthora sojae were established (7/16 cross; 17/25 cross). An F2 population derived from each cross was used to determine the genetic basis of avirulence towards 11 different resistance genes in soybean. Avirulence was found to be dominant and determined by a single locus for Avr1b, 1d, 1k, 3b, 4, and 6, as expected for a simple gene-for-gene model. We also observed several cases of segregation, inconsistent with a single dominant gene being solely responsible for avirulence, which suggests that the genetic background of the different crosses can affect avirulence. Avr4 and 6 cosegregated in both the 7/16 and 17/25 crosses and, in the 7/16 cross, Avr1b and 1k were closely linked. Information from segregating RAPD, RFLP, and AFLP markers screened on F2 progeny from the two new crosses and two crosses described previously (a total of 212 F2 individuals, 53 from each cross) were used to construct an integrated genetic linkage map of P. sojae. This revised genetic linkage map consists of 386 markers comprising 35 RFLP, 236 RAPD, and 105 AFLP markers, as well as 10 avirulence genes. The map is composed of 21 major linkage groups and seven minor linkage groups covering a total map distance of 1640.4cM.  相似文献   

8.
The F2 generations from two maize crosses were used to compare the ability of RAPD and RFLP marker systems to create a genetic linkage map. Both RFLPs and RAPDs were shown to provide Mendelian-type markers. Most of the RFLPs (80%) could be placed with a good level of certainty (LOD>4) on the genetic linkage map. However, because of their dominant nature, only between 37% and 59% of the RAPDs could be placed with such a LOD score. The use of combined data from RFLPs and RAPDs increases the level of information provided by RAPDs and allows the creation of a combined RFLP/RAPD genetic linkage map. Thus, the RAPD technique was found to be a powerful method to provide improved probes coverage on a previously created RFLP map and to locate markers linked to chromosomal regions of interest.  相似文献   

9.
Eighty single-oospore offspring of Phytophthora infestans from a mating of isolates, which had previously been analyzed for segregation of avirulence/virulence, were assessed for the inheritance of 20 RFLP markers. Three offspring were triploid; they inherited three alleles at all loci where this could be detected and when heterozygous, showed unequal intensities of hybridization with most probes. Twenty-four offspring were trisomic, as each had three doses of one or a few markers, evident from their inheritance of three alleles or from unequal hybridization to one probe. Coinheritance of the extra allele(s) and mitochondrial haplotype in the majority of trisomic offspring suggested that meiosis in oogonia was more aberrant than in antheridia. Linkage analysis was performed on 50 offspring, which were assumed to be euploid; six small linkage groups were detected and several avirulence loci were found to be linked. The origins of aberrant offspring are discussed.  相似文献   

10.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

11.
Restriction fragment length polymorphisms (RFLPs) detected using cDNA probes for conserved genes provide an important set of markers that anchor or link syntenic groups in a range of divergent mammalian species. DNA probes from sheep, cattle, pig, human and mouse were screened against sheep DNA samples and 24 new RFLP markers for sheep were identified. Among the loci tested, 22 had a homologue that has been mapped in humans. An RFLP for fibronectin (FN1) was linked to α-inhibin (INHA) at a distance of 5cM. The FN1 locus has been assigned to sheep chromosome 2q41–q44 and linkage between FN1 and INHA assigns INHA to the same chromosome in sheep. In addition to the new loci reported here, 28 RFLPs have been published previously by this group and these are collated together with RFLPs published from other laboratories. RFLPs have been reported for 86 loci in sheep. Fifty-four loci have been mapped to 16 different chromosomes.  相似文献   

12.
We screened DNA from unrelated individuals for RFLPs in the muscle nicotinic acetylcholine receptor (AcChoR) genes. These RFLP markers can be used for genetic linkage and association studies to test the hypothesis that receptor structure or regulation is involved in the development of myasthenia gravis (MG). The cDNAs from four subunits (alpha, beta, gamma, and delta) of the murine muscle AcChoR were used as probes to identify RFLPs in the homologous human genes. Digestion of DNA from 15 unrelated individuals with a set of 10 restriction enzymes revealed 11 RFLPs. At least one RFLP was found for each subunit gene. Eight RFLPs were found at the linked gamma and delta gene loci, six with minor allele frequencies greater than 15%, making that linkage group a very informative marker locus (PIC = .72). PIC values were calculated for the RFLPs from allele and haplotype frequency estimates obtained from a population sample of 53 individuals. The delta gene was assigned by in situ hybridization to region q31----q34 of chromosome 2. All pairs of RFLPs were analyzed for linkage disequilibrium. Of the 16 pairs of RFLPs from the same gene or from the linked gamma and delta genes, 13 pairs showed evidence of disequilibrium that was significant, with P less than .05. The implications of these results are discussed.  相似文献   

13.
Restriction fragment length polymorphism (RFLP) maps have been constructed for cultivated sunflower (Helianthus annuus L.) using three independent sets of RFLP probes. The aim of this research was to integrate RFLP markers from two sets with RFLP markers for resistance gene candidate (RGC) and amplified fragment length polymorphism (AFLP) markers. Genomic DNA samples of HA370 and HA372, the parents of the F2 population used to build the map, were screened for AFLPs using 42 primer combinations and RFLPs using 136 cDNA probes (RFLP analyses were performed on DNA digested with EcoRI, HindIII, EcoRV, or DraI). The AFLP primers produced 446 polymorphic and 1101 monomorphic bands between HA370 and HA372. The integrated map was built by genotyping 296 AFLP and 104 RFLP markers on 180 HA370 x HA372 F2 progeny (the AFLP marker assays were performed using 18 primer combinations). The HA370 x HA372 map comprised 17 linkage groups, presumably corresponding to the 17 haploid chromosomes of sunflower, had a mean density of 3.3 cM, and was 1326 cM long. Six RGC RFLP loci were polymorphic and mapped to three linkage groups (LG8, LG13, and LG15). AFLP markers were densely clustered on several linkage groups, and presumably reside in centromeric regions where recombination is reduced and the ratio of genetic to physical distance is low. Strategies for targeting markers to euchromatic DNA need to be tested in sunflower. The HA370 x HA372 map integrated 14 of 17 linkage groups from two independent RFLP maps. Three linkage groups were devoid of RFLP markers from one of the two maps.  相似文献   

14.
Fluorescent in situ hybridisation of pooled, closely linked RFLP markers was used to integrate the genetic linkage map and the mitotic chromosome map of the common bean. Pooled RFLP probes showed clear and reproducible signals and allowed the assignment of all linkage groups to the chromosomes of two Phaseolus vulgaris cultivars, Saxa and Calima. Low extension values for signals originating from clustered RFLPs suggest that these clones are physically close to each other and that clusters in the genetic map are not a result of suppression of recombination due to the occurrence of chromosome rearrangements. For linkage group K, clustering of markers could be associated with proximity to centromeres. High variation in the number of 45S rDNA loci was observed among cultivars, suggesting that these terminal sites are highly recombinogenic in common bean.  相似文献   

15.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

16.
Eighty single-oospore offspring of Phytophthora infestans from a mating of isolates, which had previously been analyzed for segregation of avirulence/virulence, were assessed for the inheritance of 20 RFLP markers. Three offspring were triploid; they inherited three alleles at all loci where this could be detected and when heterozygous, showed unequal intensities of hybridization with most probes. Twenty-four offspring were trisomic, as each had three doses of one or a few markers, evident from their inheritance of three alleles or from unequal hybridization to one probe. Coinheritance of the extra allele(s) and mitochondrial haplotype in the majority of trisomic offspring suggested that meiosis in oogonia was more aberrant than in antheridia. Linkage analysis was performed on 50 offspring, which were assumed to be euploid; six small linkage groups were detected and several avirulence loci were found to be linked. The origins of aberrant offspring are discussed.  相似文献   

17.
Over 500 probes revealing restriction fragment length polymorphisms (RFLPs) have been isolated by Schumm et al. (1988). We describe here the chromosomal assignment of 14 of the most highly polymorphic markers in that set of probes, with polymorphism information content values of up to 0.98. The probes were mapped using a panel of human x rodent somatic cell hybrids and were found to be distributed among nine different autosomes. Chromosome localization of such highly polymorphic markers has been an important step in the construction of the human genetic map, as a large number of RFLP probes has now been localized by genetic linkage studies to these loci.  相似文献   

18.
A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical length to map distance should make this RFLP map a useful tool for cloning genes.  相似文献   

19.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

20.
A detailed linkage map of lettuce was constructed using 53 genetic markers including 41 restriction fragment length polymorphism (RFLP) loci, five downy mildew resistance genes, four isozyme loci and three morphological markers. The genetic markers were distributed into nine linkage groups and cover 404 cM which may be 25-30% of the lettuce genome. The majority (31 of 34) of the RFLP probes detected single segregating loci, although seven of these may have been homologous to further monomorphic loci. When several loci were detected by a single probe, the loci were generally linked, suggesting tandem duplications. One probe, however, detected loci in three linkage groups suggesting translocations. The five downy mildew resistance genes (Dm1, Dm3, Dm4, Dm5/8 and Dm13), segregating in the Calmar x Kordaat cross, represented each of the four resistance gene linkage groups. Dm5/8 is flanked by two cDNA loci, each located 10 cM away. These flanking markers will be used to study the source of variation in downy mildew genes and are also part our strategy to clone resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号