首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine phosphorylation of cytoskeletal proteins at adhesive junctions has been speculated to play a role in the regulation of cell signaling at these sites. Previously, monoclonal antibodies were generated against phosphotyrosine-containing proteins from Rous sarcoma virus-transformed chick embryo fibroblasts, resulting in two antibodies which recognized antigens of 76 and 215 kDa that localized to focal contacts. We have now localized the 215-kDa antigen to a number of adhesive junctions in vivo, including the zonula adherens, intercalated discs, and myotendinous and neuromuscular junctions. In sections of skeletal muscle and in isolated myofibrils, the 215-kDa protein was localized to the I-band. By immunoprecipitation and immunoblot analysis, we determined that the 215-kDa antigen cross-reacts with a polyclonal anti-tensin antibody.  相似文献   

2.
The tight junction is an essential element of the intercellular junctional complex; yet its protein composition is not fully understood. At present, only three proteins, ZO-1 (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766), cingulin (Citi, S., H. Sabanay, R. Jakes, B. Geiger, and J. Kendrick-Jones. 1988. Nature (Lond.). 333:272-275) and ZO-2 (Gumbiner, B., T. Lowenkopf, and D. Apatira. 1991. Proc. Natl. Acad. Sci. USA. 88:3460-3464) are known to be associated with the tight junction. We have generated a monoclonal antibody (7H6) against a bile canaliculus-rich membrane fraction prepared from rat liver. This 7H6 antigen was preferentially localized by immunofluorescence at the junctional complex regions of hepatocytes and other epithelia, and 7H6- affiliated gold particles were shown electron microscopically to localize at the periphery of tight junctions. Immunoblot analysis of a bile canaliculus-rich fraction of rat liver using 7H6, anti-ZO-1 antibody (R26.4C), and anti-cingulin antibody revealed that 7H6 reacted selectively with a 155-kD protein, whereas R26.4C reacted only with a 225-kD protein. Anti-cingulin antibody reacted solely with 140 and 108- kD proteins, indicating that the protein recognized by 7H6 is immunologically different from ZO-1 and cingulin. Immunoprecipitation of detergent extracts obtained from metabolically labeled MDCK cells with R26.4C coprecipitated a 160-kD protein, which corresponds to ZO-2, with ZO-1. However, 7H6 did not react with the 160-kD protein. These results strongly suggest that the 7H6 antibody recognizes a novel tight junction-associated protein different from ZO-1, cingulin and ZO-2.  相似文献   

3.
A monoclonal antibody (MAb 30B6) was recently described by Rogalski and Singer (J. Cell Biol. 101:785-801, 1985) which identified an integral membrane glycoprotein of chicken cells that was associated with a wide variety of sites of actin microfilament attachments to membranes. In this report, we present a further characterization of this integral protein. An immunochemical comparison was made of MAb 30B6 binding properties with those of two other MAbs, JG9 and JG22, which identify a component of a membrane protein complex that interacts with extracellular matrix proteins including fibronectin. We showed that the 110-kilodalton protein recognized by MAb 30B6 in extracts of chicken gizzard smooth muscle is identical, or closely related, to the protein that reacts with MAbs JG9 and JG22. These 110-kilodalton proteins are also structurally closely similar, if not identical, to one another as demonstrated by 125I-tryptic peptide maps. However, competition experiments showed that MAb 30B6 recognizes a different epitope from those recognized by MAbs JG9 and JG22. In addition, the 30B6 antigen is part of a complex that can be isolated on fibronectin columns. These results together establish that the 30B6 antigen is the same as, or closely similar to, the beta-chain of the protein complex named integrin, which is the complex on chicken fibroblast membranes that binds fibronectin. Although the 30B6 antigen is present in a wide range of tissues, its apparent molecular weight on gels varies in different tissues. These differences in apparent molecular weight are due, in large part, to differences in glycosylation.  相似文献   

4.
The human monoclonal antibody AE6F4 specifically reacts with human lung cancer tissues but does not with normal tissues. This monoclonal antibody recognizes a cytosolic 31 kDa antigen in the cancer cells. In a previous study, we elucidated that the 31 kDa antigen belonged to a family of proteins collectively designated as 14-3-3 proteins, which were known as protein kinase-dependent activators of tyrosine/trytophan hydroxylases, or protein kinase C inhibitor proteins. Here we report molecular cloning of the 31 kDa antigen from the human lung adenocarcinoma cell line, A549. Sequencing analysis indicates that the cloned cDNA is identical to that of previously reported human placental cytosolic phospholipase A2 (cPLA2), which is also a member of the 14-3-3 protein family. Western analysis demonstrated that a 31 kDa recombinant cPLA2 expressed in monkey COS cells was recognized by the AE6F4 monoclonal antibody. Binding of the monoclonal antibody to the recombinant cPLA2 was abolished when treated with sodium periodate, suggesting that not only are carbohydrate chains associated with the cPLA2, but they also play a crucial role in antigen recognition by the monoclonal antibody.  相似文献   

5.
Hepatitis delta virus (HDV)-associated particles were purified from the serum of an experimentally infected chimpanzee by size chromatography and by density centrifugation. Hepatitis delta antigen (HDAg) was detected after mild detergent treatment at a column elution volume corresponding to 36-nm particles and banded at a density of 1.25 g/ml. The serum had an estimated titer of 10(9) to 10(10) HDV-associated particles and had only a 10-fold excess of hepatitis B surface antigen (HBsAg) not associated with HDAg. Therefore, HDV appears to be much more efficiently packed and secreted than is its helper virus, hepatitis B virus (HBV), which is usually accompanied by a 1,000-fold excess of HBsAg. The protein compositions of the HDAg-containing particles were analyzed by immunoblotting with HDAg-, HBsAg-, and hepatitis B core antigen-specific antisera and monoclonal antibodies to HBV surface gene products. The HBsAg envelope of HDAg contained approximately 95% P24/GP27s, 5% GP33/36s, and 1% P39/GP42s proteins. This protein composition was more similar to that of the 22-nm particles of HBsAg than to that of complete HBV. The significant amount of GP33/36s suggests that the HBsAg component of the HDV-associated particle carries the albumin receptor. Two proteins of 27 and 29 kilodaltons which specifically bound antibody to HDAg but not HBV-specific antibodies were detected in the interior of the 36-nm particle. Since these proteins were structural components of HDAg and were most likely coded for by HDV, they were designated P27d and P29d.  相似文献   

6.
Three monoclonal antibodies were produced against the Epstein-Barr virus-induced early antigen complex. These antibodies were shown to be specific for the early antigen complex by the fact that they only reacted with cells supporting a permissive or abortive Epstein-Barr virus infection and their synthesis was not affected by inhibitors of viral DNA synthesis. One monoclonal antibody, designated R3, was directed against a diffuse component of the early antigen complex since it reacted by immunofluorescence with cells fixed in acetone or methanol. The other two monoclonal antibodies, designated K8 and K9, reacted with a methanol-sensitive restricted component of this complex. The appearance of the R3 antigen in P3HR-1 superinfected Raji cells occurred approximately 4 h earlier than the antigen detected by K8. By both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and radioimmunoelectrophoresis, it was determined that the R3 monoclonal antibody recognized two major polypeptides with molecular weights of approximately 50,000 to 52,000, whereas K8 and K9 precipitated a protein of approximately 85,000. The R3 monoclonal antibody also immunoprecipitated an in vitro primary translation product. It was, therefore, possible to map this product to the Epstein-Barr virus DNA BamH1 M fragment. These in vitro products were slightly smaller than the in vivo proteins, suggesting that these proteins probably undergo posttranslational modification during the virus replication cycle.  相似文献   

7.
Protein C undergoes Ca2+-induced conformational changes required for activation by the thrombin-thrombomodulin complex. A Ca2+-dependent monoclonal antibody (HPC4) that blocks protein C activation was used to study conformational changes near the activation site in protein C. The half-maximal Ca2+ dependence was similar for protein C and gamma-carboxy-glutamic acid-domainless protein C for binding to HPC4 (205 +/- 23 and 110 +/- 29 microM Ca2+, respectively), activation rates (214 +/- 22 and 210 +/- 37 microM), and intrinsic fluorescence of gamma-carboxyglutamic acid-domainless protein C (176 +/- 34 microM). Protein C heavy chain binding to HPC4 was half-maximal at 36 microM Ca2+, although neither the heavy chain nor HPC4 separately bound Ca2+ with high affinity. The epitope was lost when the activation peptide was released. A synthetic peptide, P (6-17), which spans the activation site, exhibited Ca2+-dependent binding to HPC4 (half-maximal binding = 6 microM Ca2+). Thus, each decrease in antigen structure resulted in a reduced Ca2+ requirement for binding to HPC4. Tb3+ and Ca2+ binding studies demonstrated a Ca2+-binding site in HPC4 required for high affinity antigen binding. These studies provide the first direct evidence for a Ca2+-induced conformational change in the activation region of a vitamin K-dependent zymogen. Furthermore, Ca2+ binding to HPC4 is required for antigen binding. The multiple roles of Ca2+ described may be useful in interpretation of other metal-dependent antibody/antigen interactions.  相似文献   

8.
《The Journal of cell biology》1985,101(4):1307-1315
It has previously been shown that the monoclonal antibody anti-Arc-1 dissociates Madin-Darby canine kidney (MDCK) epithelial cells and changes their morphology in vitro (Imhof, B.A., H.P. Vollmers, S.L. Goodman, and W. Birchmeier, 1983, Cell, 35:667-675). In this article we demonstrate that the anti-Arc-1 antibody recognizes an uvomorulin-like molecule on MDCK cells, i.e., it immunoprecipitates an 84-kD protein fragment from a tryptic digest of cell surfaces in the presence of Ca2+ (as does anti-uvomorulin antiserum). Furthermore, anti-uvomorulin antiserum prevents the binding of anti-Arc-1 to MDCK cells. The distribution of the Arc-1 antigen is also quite similar to that of uvomorulin: it is enriched at the cell-cell contacts both of MDCK cells and of cells in various canine tissues. In the intestinal epithelium the antigen could be further localized in the region of the junctional complex. To study the mechanism of action of the dissociating antibody, MDCK cells grown on Nuclepore filters in Boyden chambers were exposed to anti-Arc-1 from either the upper or lower compartment. It could be shown that the antibody interfered with cell adhesion only from the basolateral but not from the apical cell surface. Antibody action was inhibited in the presence of colchicine but not cytochalasin B. Furthermore, cell dissociation was prevented when the cellular cAMP level was raised. These findings indicate that the anti-Arc-1 antibody acts on a target below the tight junctions (possibly on the antigen located in the junctional complex), and they confirm that cytoskeleton and metabolic factors are actively involved in the maintenance of junctional integrity.  相似文献   

9.
Ca(2+)-handling proteins are important regulators of the excitation-contraction-relaxation cycle in skeletal muscle fibres. Although domain binding studies suggest protein coupling between various Ca(2+)-regulatory elements of triad junctions, no direct biochemical evidence exists demonstrating high-molecular-mass complex formation in native microsomal membranes. Calsequestrin represents the protein backbone of the luminal Ca(2+) reservoir and thereby occupies a central position in Ca(2+) homeostasis; we therefore used calsequestrin blot overlay assays in order to determine complex formation between sarcoplasmic reticulum components. Peroxidase-conjugated calsequestrin clearly labelled four major protein bands in one-dimensional (1D) and 2D electrophoretically separated membrane preparations from adult skeletal muscle. Immunoblotting identified the calsequestrin-binding proteins of approximately 26, 63, 94 and 560 kDa as junctin, calsequestrin itself, triadin and the ryanodine receptor, respectively. Protein-protein coupling could be modified by ionic detergents, non-ionic detergents, changes in Ca(2+) concentration, as well as antibody and purified calsequestrin binding. Importantly, complex formation as determined by blot overlay assays was confirmed by differential co-immunoprecipitation experiments and chemical crosslinking analysis. Hence, the key Ca(2+)-regulatory membrane components of skeletal muscle form a supramolecular membrane assembly. The formation of this tightly associated junctional sarcoplasmic reticulum complex seems to underlie the physiological regulation of skeletal muscle contraction and relaxation, which supports the biochemical concept that Ca(2+) homeostasis is regulated by direct protein-protein interactions.  相似文献   

10.
A human serum protein system that affects muscle contractility, previously reported to be a calcium transport system (CTS), was fractionated into five protein components, A, B1, Bf1, B3 and C. The system was assayed on frog heart muscle in vitro by its capacity to increase contractile force and at high concentrations to cause contracture. With separated fractions, the reaction sequence was divided into three separate steps: B1 and B3 interacted with the heart in the first step, B2 and B3 in the second, and A and C in the third. Increased contractility occurred only after the third step. Partial purification, with preservation of biological activity, was achieved for B1, B2, A and C. B1 has a M.W. of about 170,000, as determined by its elution from Sephadex G-200. B2, a labile protein of M.W. 220,000, was one of the few serum proteins precipitated by M.W. 500,000 dextran sulfate at pH 8.0. This was the basis for the preparation of highly purified B2, which was used to produce rabbit anti-B2 antibody. Experiments with this antibody proved that B2 became bound to the heart surface. CTS-A, the smallest protein of the system, had a M.W. of approximately 130,000. The M.W. of C was over 300,000. Purified C antigen induced rabbit antibody that inhibited the action of C without affecting the other components.  相似文献   

11.
In our previous study, a kind of novel hybrid immunoglobulin (Ig)-binding proteins (IBPs) was obtained with the characteristic structure of alternately arranged Finegoldia magna (formerly Peptostreptococcus magnus) protein L (P. magnus protein L, PpL) B3 domain (B3) and Staphylococcal protein A (SpA) D domain (D). In this study, two representative molecules of these novel proteins, LD3 (B3-D-B3) and LD5 (B3-D-B3-D-B3) (LD3/5), showed substantially higher affinity for IgG-F(ab')2, IgM, and IgA than 4L (B3-B3-B3-B3) or SpA, which were also demonstrated by surface plasmon resonance detection. Further, LD5 showed much stronger binding to single-chain Fv (scFv) KM38 (V(H)3-V(kappa)I) than to KM41 (V(H)1-V(kappa)III) or KM36 (V(H)3-V(kappa)III). Competitive inhibition studies showed that 4L alone or in combination with SpA (4L + SpA) was a weaker inhibitor than LD3/5 in inhibiting LD3/5's binding to IgG-F(ab')2, IgM, or IgA. The computer modeling suggested that the B3-D arrangement in LD3/5 could simultaneously bind to V(H)3 and V(kappa). Thus, our results indicated for the first time that alternate arrangement of B3 and D domains creates synergistic double-site binding to V(H)3 and V(kappa) regions of fragment of antigen binding. The different competitive inhibition pattern of binding of LD5 to scFv KM38 by 4L + SpA suggested strict use of antibody conformation for this simultaneous double-site binding. The demonstration of this novel binding property would promote to achieve the designed hybrid IBPs for useful immunological applications.  相似文献   

12.
A monoclonal antibody described previously by us (Edwards, D. P., Weigel, N. L., Schrader, W. T., O'Malley, B. W., and McGuire, W. L. (1984) Biochemistry 23, 4427-4435) was used to study progesterone receptor B subunits of chick and hen oviduct. We find that the antibody does not recognize the form of receptor B able to bind [3H]progesterone in vitro. Rather, it reacts exclusively with a homologous protein of the same molecular weight, termed B antigen. The antigen is present in both immature estrogen-treated chicks and in egg-laying hens. This antigen is indistinguishable from the hormone-binding receptor species (termed receptor B) as shown by peptide mapping techniques using either Staphylococcus aureus V8 protease or trypsin. The B antigen and the hormone binder can be resolved by ion-exchange chromatography. Sedimentation velocity data show that the two proteins are present in distinct, separable cytosolic entities. The functional relationship between the two proteins has not been established.  相似文献   

13.
Abstract Since 1988, N. meningitidis , B:4:P1.15, ET-5 complex, has been responsible for an epidemic of meningococcal disease in Greater São Paulo, Brazil. Despite current trials to develop an effective vaccine against group B meningococci, children less than 2 years old have not been protected. It has been suggested that iron-regulated proteins (IRPs) should be considered as potential antigens for meningococcal vaccines. The vaccines under study consisted of outer-membrane vesicles depleted of lipooligosaccharide from three serogroup B strains and one serogroup C strain, IRPs, meningococcal group C polysaccharide and aluminum hydroxide. Four different protein and C polysaccharide concentrations were studied. The ELISA and bactericidal results showed a higher antibody response when 2 injections of 2.0 μg doses were administered. Despite higher IgG reactivity against antigen preparations containing IRPs seen in ELISA, the bactericidal activity was not increased if the target strain was grown in iron-restricted medium. The influence of addition of alkaline-detoxified lipooligosaccharide (dLOS) on immunogenicity of the vaccine was also investigated, and the dLOS provided for a more functionally specific antibody response.  相似文献   

14.
目的:评价新型冠状病毒(SARS-CoV-2)重组S1蛋白和S蛋白疫苗对SARS-CoV-2的免疫保护效果。方法:将SARS-CoV-2重组S1蛋白和S蛋白分别联合氢氧化铝佐剂以0.1 μg/只、1 μg/只、5 μg/只、10 μg/只不同剂量接种6~8周BALB/c纯系健康雌性小鼠。第二次免疫后采血通过酶联免疫吸附试验(ELISA)检测血清中IgG抗体效价,通过假病毒中和试验比较免疫小鼠血清对SARS-CoV-2野生型株(WT)、英国株(B.1.1.7)、巴西株(P.1)、印度株(B.1.617.2)、Mu毒株(B.1.621)和南非株(501Y.V2-1)六种假病毒毒株中和活性效价,取脾细胞通过酶联免疫斑点技术(ELISpot)检测免疫小鼠的细胞免疫水平。结果:SARS-CoV-2重组S和S1蛋白都能诱导小鼠产生较强的IgG抗体水平。免疫S1蛋白的小鼠血清对SARS-CoV-2野生型株、英国株、巴西株有明显的中和活性,免疫S蛋白的小鼠血清除了对SARS-CoV-2野生型株、英国株、巴西株有明显中和活性之外,对印度株也有明显的中和活性,两种蛋白质免疫的小鼠血清均对野生型株中和效果最强。S蛋白免疫的小鼠脾细胞能够显著诱导出γ干扰素(IFN-γ)和白介素-4(IL-4)的产生。S蛋白诱导产生的IgG抗体、中和抗体、细胞免疫水平均高于S1。结论:SARS-CoV-2重组S蛋白疫苗能够诱导产生较强的保护性免疫应答。  相似文献   

15.
Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.  相似文献   

16.
Ecto-ATPase activity of alpha-sarcoglycan (adhalin)   总被引:4,自引:0,他引:4  
alpha-Sarcoglycan is a component of the sarcoglycan complex of dystrophin-associated proteins. Mutations of any of the sarcoglycan genes cause specific forms of muscular dystrophies, collectively termed sarcoglycanopathies. Importantly, a deficiency of any specific sarcoglycan affects the expression of the others. Thus, it appears that the lack of sarcoglycans deprives the muscle cell of an essential, yet unknown function. In the present study, we provide evidence for an ecto-ATPase activity of alpha-sarcoglycan. alpha-Sarcoglycan binds ATP in a Mg2+-dependent and Ca2+-independent manner. The binding is inhibited by 3'-O-(4-benzoyl)benzoyl ATP and ADP. Sequence analysis reveals the existence of a consensus site for nucleotide binding in the extracellular domain of the protein. An antibody against this sequence inhibits the binding of ATP. A dystrophin.dystrophin-associated protein preparation demonstrates a Mg-ATPase activity that is inhibited by the antibody but not by inhibitors of endo-ATPases. In addition, we demonstrate the presence in the sarcolemmal membrane of a P2X-type purinergic receptor. These data suggest that alpha-sarcoglycan may modulate the activity of P2X receptors by buffering the extracellular ATP concentration. The absence of alpha-sarcoglycan in sarcoglycanopathies leaves elevated the concentration of extracellular ATP and the persistent activation of P2X receptors, leading to intracellular Ca2+ overload and muscle fiber death.  相似文献   

17.
A 135-kd membrane protein of intercellular adherens junctions.   总被引:41,自引:2,他引:39       下载免费PDF全文
T Volk  B Geiger 《The EMBO journal》1984,3(10):2249-2260
We report here on a new 135-kd membrane protein which is specifically associated with intercellular adherens-type junctions. This surface component was identified by a monoclonal antibody, ID-7.2.3, raised against detergent-extracted components of membranes of chicken cardiac muscle rich in intercalated discs. The antibodies stain extensively adherens junctions in intact cardiac muscle and in lens, as well as in cultured cells derived from these tissues. In living cultured cells only very little immunolabelling was obtained with ID-7.2.3 antibodies, probably due to the limited accessibility of the antibodies to the intercellular gap. However, upon the removal of extracellular Ca2+ ions a dissociation of the junction occurred, leading to the rapid exposure of the 135-kd protein. Immunoelectron microscopic labelling of EGTA-treated, or detergent-permeabilized cells indicated that the antigen is found along the plasma membrane and highly enriched in contact areas. Double immunolabelling for both the 135-kd protein and vinculin pointed to the close association of the two in intercellular junctions and to the apparent absence of the former protein from the vinculin-rich focal contacts of cultured cells and from dense plaque of smooth muscle. Immunoblotting indicated that the 135-kd protein is present in many tissues but is particularly enriched in heart, lens and brain.  相似文献   

18.
mAbs were raised in mice against cultured human endothelial cells (EC) and screened by indirect immunofluorescence for their ability to stain intercellular contacts. One mAb denoted 7B4 was identified which, out of many cultured cell types, specifically decorated cultured human EC. The antigen recognized by mAb 7B4 is bound at the appositional surfaces of cultured EC only as they become confluent and is stably expressed at intercellular boundaries of confluent monolayers. EC recognition specificity was maintained when the antibody was assayed by immuno-histochemistry in tissue sections of many normal and malignant tissues and in blood vessels of different size and type. The antigen recognized by 7B4 was enriched at EC intercellular boundaries similarly in vitro and in situ. In vitro, addition of mAb 7B4 to confluent EC increased permeation of macromolecules across monolayers even without any obvious changes of cell morphology. In addition, when EC permeability was increased by agents such as thrombin, elastase, and TNF/gamma IFN, its distribution pattern at intercellular contact rims was severely altered. mAb 7B4 immunoprecipitated a major protein of 140 kD from metabolically and surface-labeled cultured EC extracts which appeared to be an integral membrane glycoprotein. On the basis of its distribution in cultured cells and in tissues in situ, 7B4 antigen is distinct from other described EC proteins enriched at intercellular contacts. NH2-terminal sequencing of the antigen, immunopurified from human placenta, and sequencing of peptides from tryptic peptide maps revealed identity to the cDNA deduced sequence of a recently identified new member of the cadherin family (Suzuki, S., K. Sano, and H. Tanihara. 1991. Cell Regul. 2:261-270.) These data indicate that 7B4 antigen is an endothelial-specific cadherin that plays a role in the organization of lateral endothelial junctions and in the control of permeability properties of vascular endothelium.  相似文献   

19.
The proteins in apical organelles of Plasmodium falciparum merozoite play an important role in invasion into erythrocytes. Several rhoptry neck (RON) proteins have been identified in rhoptry proteome of the closely-related apicomplexan parasite, Toxoplasma gondii. Recently, three of P. falciparum proteins orthologous to TgRON proteins, PfRON2, 4 and 5, were found to be located in the rhoptry neck and interact with the micronemal protein apical membrane antigen 1 (PfAMA1) to form a moving junction complex that helps the invasion of merozoite into erythrocyte. However, the other P. falciparum RON proteins have yet to be characterized. Here, we determined that "PFL2505c" (hereafter referred to as pfron3) is the ortholog of the tgron3 in P. falciparum and characterized its protein expression profile, subcellular localization, and complex formation. Protein expression analysis revealed that PfRON3 was expressed primarily in late schizont stage parasites. Immunofluorescence microscopy (IFA) showed that PfRON3 localizes in the apical region of P. falciparum merozoites. Results from immunoelectron microscopy, along with IFA, clarified that PfRON3 localizes in the rhoptry body and not in the rhoptry neck. Even after erythrocyte invasion, PfRON3 was still detectable at the parasite ring stage in the parasitophorous vacuole. Moreover, co-immunoprecipitation studies indicated that PfRON3 interacts with PfRON2 and PfRON4, but not with PfAMA1. These results suggest that PfRON3 partakes in the novel PfRON complex formation (PfRON2, 3, and 4), but not in the moving junction complex (PfRON2, 4, 5, and PfAMA1). The novel PfRON complex, as well as the moving junction complex, might play a fundamental role in erythrocyte invasion by merozoite stage parasites.  相似文献   

20.
Members of the P(4) family of P-type ATPases (P(4)-ATPases) are believed to function as phospholipid flippases in complex with CDC50 proteins. Mutations in the human class 1 P(4)-ATPase gene ATP8B1 cause a severe syndrome characterized by impaired bile flow (intrahepatic cholestasis), often leading to end-stage liver failure in childhood. In this study, we determined the specificity of human class 1 P(4)-ATPase interactions with CDC50 proteins and the functional consequences of these interactions on protein abundance and localization of both protein classes. ATP8B1 and ATP8B2 co-immunoprecipitated with CDC50A and CDC50B, whereas ATP8B4, ATP8A1, and ATP8A2 associated only with CDC50A. ATP8B1 shifted from the endoplasmic reticulum (ER) to the plasma membrane upon coexpression of CDC50A or CDC50B. ATP8A1 and ATP8A2 translocated from the ER to the Golgi complex and plasma membrane upon coexpression of CDC50A, but not CDC50B. ATP8B2 and ATP8B4 already displayed partial plasma membrane localization in the absence of CDC50 coexpression but displayed a large increase in plasma membrane abundance upon coexpression of CDC50A. ATP8B3 did not bind CDC50A and CDC50B and was invariably present in the ER. Our data show that interactions between CDC50 proteins and class 1 P(4)-ATPases are essential for ER exit and stability of both subunits. Furthermore, the subcellular localization of the complex is determined by the P(4)-ATPase, not the CDC50 protein. The interactions of CDC50A and CDC50B with multiple members of the human P(4)-ATPase family suggest that these proteins perform broader functions in human physiology than thus far assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号