首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA as an enzyme     
The catalytic activity of ribonucleic acid is reviewed, with the intervening sequence (IVS) of the ribosomal RNA precursor of Tetrahymena serving as a major example. The IVS catalyzes its own excision from the precursor RNA and at the same time ligation of the flanking sequences, a reaction termed self-splicing. The excised IVS RNA can act as an enzyme to catalyze sequence-specific cleavage and ligation reactions on substrate RNA molecules. The RNA polymerization activity of the IVS supports the possibility that RNA catalysis could have been important in establishing a prebiotic self-replicating system. Other systems in which RNA catalysis has been found include related group I IVSs, group II IVSs, ribonuclease P, and certain plant infectious RNAs.  相似文献   

2.
3.
Zahn K  Inui M  Yukawa H 《Nucleic acids research》2000,28(23):4623-4633
Widespread occurrence of a separate small RNA derived from the 5'-end of 23S rRNA and of an intervening sequence (IVS) which separates this domain from the main segment of 23S rRNA in the alpha-proteobacteria implies that processing reactions which act to excise the IVS are also maintained in this group. We previously characterized the first example of processing of this IVS in Rhodopseudomonas palustris, which is classified with the Bradyrhizobia In this case, IVS excision occurs by a multistep process and RNase III appears to act at an early step. Here, we characterize in vivo and in vitro IVS processing in two other related, but phenotypically distinct, Bradyrhizobia We also examine in vivo and in vitro processing of rRNA precursors from a more distantly related alpha-proteobacterium, Rhodobacter sphaeroides which produces a separate 5' 23S rRNA domain but has different sequences in the 5' 23S rRNA IVS. The details of the in vivo processing of all of the Bradyrhizobial rRNAs closely resemble the R. palustris example and in vitro studies suggest that all of the Bradyrhizobia utilize RNase III in the first step of IVS cleavage. Remarkably, in vivo and in vitro studies with R.sphaeroides indicate that initial IVS cleavage uses a different mechanism. While the mechanism of IVS cleavage differs among these alpha-proteobacteria, in all of these cases the limits of the internal segments processed in vivo are almost identical and occur far beyond the initial cleavage sites within the IVSs. We propose that these bacteria possess common secondary maturation pathways which enable them to generate similarly processed 23S rRNA 5'- and 3'-ends.  相似文献   

4.
5.
Campylobacter jejuni is a significant cause of bacterial enteritis in humans. Three of seven C. jejuni isolates examined were found to contain fragmented 23S rRNA. The occurrence of fragmented 23S rRNA correlated with the presence of an intervening sequence (IVS) within the 23S rRNA genes. The IVS is 157 nucleotides in length and replaces an eight nucleotide sequence in the 23S rRNA genes of C. jejuni isolates that contain intact 23S rRNA. The two ends of the IVS share 31 bases of complementarity that could form a stem-loop structure. Fragmentation of the 23S ribosomal RNA results from the excision of the IVS from the transcribed RNA; the 3’ cleavage site maps within the putative stem-loop formed by the IVS. Southern hybridization analysis revealed that the IVS is not present in the genomes of isolates that contain intact 23S rRNA, suggesting that the IVS is not derived from Campylobacter chromosomal sequences. The C. jejuni IVS is located at a position analogous to that of the IVSs found in both Salmonella and Yersinia spp.  相似文献   

6.
An RNA molecule consisting of the 5' exon and intervening sequence (IVS) of Tetrahymena precursor rRNA was oxidized with sodium periodate to convert the ribose moiety of the 3' terminal guanosine into a dialdehyde form. The modified RNA undergoes a specific cleavage reaction at the 5' splice site, but has no apparent cyclization activity. This novel reaction mediated by the IVS RNA is pH dependent over the range 6.5-8.5 and leaves a 5' phosphate and a 3'-OH at the newly created termini. The dialdehyde form of monomer guanosine is also capable of causing a specific cleavage reaction at the 5' splice site although the nucleotide is not covalently attached to the IVS RNA in the final product. These and other findings described in this report suggest that the cis diol of the intact ribose moiety of guanosine is not an absolute requirement for the IVS-mediated reactions.  相似文献   

7.
G Afseth  Y Y Mo    L P Mallavia 《Journal of bacteriology》1995,177(10):2946-2949
Characterization of the rRNA operon from the obligate intracellular bacterium Coxiella burnetii has determined the order of the rRNA genes to be 16S-23S-5S. A 444-bp intervening sequence (IVS) was identified to interrupt the 23S rRNA gene beginning at position 1176. The IVS is predicted to form a stem-loop structure formed by flanking inverted repeats, and the absence of intact 23S rRNA molecules suggests that the loop is removed. An open reading frame in the IVS has been identified that shows 70% similarity at the amino acid level to IVS open reading frames characterized from four species of Leptospira.  相似文献   

8.
B L Bass  T R Cech 《Biochemistry》1986,25(16):4473-4477
The intervening sequence (IVS) of the Tetrahymena rRNA precursor catalyzes its own splicing. During splicing the 3'-hydroxyl of guanosine is ligated to the 5' terminus of the IVS. One catalytic strategy of the IVS RNA is to specifically bind its guanosine substrate. Deoxyguanosine (dG) and dideoxyguanosine (ddG) are found to be competitive inhibitors of self-splicing. Comparison of the kinetic parameters (Ki = 1.1 mM for dG; Ki = 5.4 mM for ddG; Km = 0.032 mM for guanosine) indicates that the ribose hydroxyls are necessary for optimal binding of guanosine to the RNA. dG is not a substrate for the reaction even at very high concentrations. Thus, in addition to aiding in binding, the 2'-hydroxyl is necessary for reaction of the 3'-hydroxyl. A second catalytic strategy of the IVS RNA is to enhance the reactivity of specific bonds. For example, the phosphodiester bond at the 3' splice site is extremely labile to hydrolysis. We find that dG and ddG, as well as 2'-O-methylguanosine and 3'-O-methylguanosine, reduce hydrolysis at the 3' splice site. These data are consistent with an RNA structure that brings the 5' and 3' splice sites proximal to the guanosine binding site.  相似文献   

9.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

10.
Allosteric mechanisms are widely used in nature to control the rates of enzymatic reactions, but little is known about RNA catalysts controlled by these principles. The only natural allosteric ribozyme reported to date catalyzes an RNA cleavage reaction, and so do almost all artificial systems. RNA has, however, been shown to accelerate a much wider range of chemical reactions. Here we report that RNA catalysts for organic reactions can be put under the stringent control of effector molecules by straight-forward rational design. This approach uses known RNA sequences with catalytic and ligand-binding properties, and exploits weakly conserved sequence elements and available structural information to induce the formation of alternative, catalytically inactive structures. The potential and general applicability is demonstrated by the design of three different systems in which the rate of a catalytic carbon–carbon bond forming reaction is positively regulated up to 2100-fold by theophylline, tobramycin and a specific mRNA sequence, respectively. Although smaller in size than a tRNA, all three ribozymes show typical features of allosteric metabolic enzymes, namely high rate acceleration and tight allosteric regulation. Not only do these findings demonstrate RNA's power as a catalyst, but also highlight on RNA's capabilities as signaling components in regulatory networks.  相似文献   

11.
Reversible chemistry, allowing for chain-forming as well as chain-breaking steps, is important for biological self-organization. In this context, ribozymes, catalyzing both RNA cleavage and ligation, may have significantly contributed to extending the sequence space and length of RNA molecules in early life forms. Here we present an engineered RNA that self-processes by passing through a number of cleavage and ligation steps. Intermolecular reactions compete with intramolecular reactions, resulting in a variety of products. Our results demonstrate that RNA can undergo self-oligomerization, which may have been important for extending the RNA genome size in RNA world scenarios.  相似文献   

12.
F X Sullivan  T R Cech 《Cell》1985,42(2):639-648
The Tetrahymena rRNA intervening sequence (IVS) excises itself from the pre-rRNA and then mediates its own cyclization. We now find that certain di- and trinucleotides with free 3' hydroxyl groups reopen the circular IVS at the cyclization junction, producing a linear molecule with the oligonucleotide covalently attached to its 5' end. This linear molecule recyclizes with release of the added oligonucleotide. Thus the IVS RNA, like an enzyme, lowers the activation energy for both forward and reverse cleavage-ligation reactions. Certain combinations of pyrimidines are required for circle reopening. The most reactive oligonucleotide is UCU. This sequence resembles those preceding the major and minor cyclization sites in the linear IVS RNA (UUU and CCU) and the 5' splice site in the pre-rRNA (UCU). We propose that an oligopyrimidine binding site within the IVS binds the sequences upstream of each of these target sites for cleavage-ligation.  相似文献   

13.
J Venema  Y Henry    D Tollervey 《The EMBO journal》1995,14(19):4883-4892
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S rRNA) are transcribed as a single precursor, which is subsequently processed into the mature species by a complex series of cleavage and modification reactions. Early cleavage at site A1 generates the mature 5'-end of 18S rRNA. Mutational analyses have identified a number of upstream regions in the 5' external transcribed spacer (5' ETS), including a U3 binding site, which are required in cis for processing at A1. Nothing is known, however, about the requirement for cis-acting elements which define the position of the 5'-end of the 18S rRNA or of any other eukaryotic rRNA. We have introduced mutations around A1 and analyzed them in vivo in a genetic background where the mutant pre-rRNA is the only species synthesized. The results indicate that the mature 5'-end of 18S rRNA in yeast is identified by two partially independent recognition systems, both defining the same cleavage site. One mechanism identifies the site of cleavage at A1 in a sequence-specific manner involving recognition of phylogenetically conserved nucleotides immediately upstream of A1 in the 5' ETS. The second mechanism specifies the 5'-end of 18S rRNA by spacing the A1 cleavage at a fixed distance of 3 nt from the 5' stem-loop/pseudoknot structure located within the mature sequence. The 5' product of the A1 processing reaction can also be identified, showing that, in contrast to yeast 5.8S rRNA, the 5'-end of 18S rRNA is generated by endonucleolytic cleavage.  相似文献   

14.
M D Been  T R Cech 《Cell》1986,47(2):207-216
The specificity of reactions catalyzed by the Tetrahymena pre-rRNA intervening sequence (IVS) was studied using site-specific mutagenesis. Two sequences required for 5' splice-site selection during self-splicing were defined. Single-base changes in either a 5' exon sequence or a 5' exon-binding site within the IVS disrupt their ability to pair and result in inefficient or inaccurate splicing. Combinations that restore complementarity suppress the effect of the single-base changes. Sequence alterations in the 5' exon-binding site also change the specificity of two other reactions: intermolecular exon ligation (trans-splicing) and the enzymatic nucleotidyltransferase activity of the IVS RNA. Thus the substrate specificity of an RNA enzyme can be changed in a manner predictable by the rules of Watson-Crick base-pairing.  相似文献   

15.
In homologous recombination in bacteria, the RuvAB Holliday junction-specific helicase catalyzes Holliday junction branch migration, and the RuvC Holliday junction resolvase catalyzes formation of spliced or patched structures. RuvAB and RuvC from the hyperthermophile Thermotoga maritima were expressed in Escherichia coli and purified to homogeneity. An inverted repeat sequence with unique termini was produced by PCR, restriction endonuclease cleavage, and head-to-tail ligation. A second inverted repeat sequence was derived by amplification of a second template containing a three-nucleotide insertion. Reassociation products from a mixture of these two sequences were homoduplex linear molecules and heteroduplex heat-stable Holliday junctions, which acted as substrates for both T. maritima RuvAB and RuvC. The T. maritima RuvAB helicase catalyzed energy-dependent Holliday junction branch migration at 70 degrees C, leading to heteroduplex linear duplex molecules with two three-nucleotide loops. Either ATP or ATP gamma S hydrolysis served as the energy source. T. maritima RuvC resolved Holliday junctions at 70 degrees C. Remarkably, the cleavage site was identical to the preferred cleavage site for E. coli RuvC [(A/T)TT(downward arrow)(G/C)]. The conservation of function and the ease of purification of wild-type and mutant thermophilic proteins argues for the use of T. maritima proteins for additional biochemical and structural studies.  相似文献   

16.
17.
The intervening sequence (IVS) excised from the rRNA precursor of Tetrahymena thermophila is converted to a covalently closed circular RNA in the absence of proteins in vitro. This self-catalyzed cyclization reaction is inhibited by the intercalating dye methidiumpropyl.EDTA (MPE; R.P. Hertzberg and P.B. Dervan (1982) J. Am. Chem. Soc. 104, 313-315). The MPE binding sites have been localized by mapping the sites of MPE.Fe(II) cleavage of the IVS RNA. There are three major binding sites within the 414 nucleotide IVS RNA. Two of these sites coincide with the A.B and 9L.2 pairings. These are structural elements that are conserved in all group I introns and are implicated as being functionally important for splicing. We propose that interaction of MPE with these sites is responsible for dye inhibition of cyclization. The reactions of MPE.Fe(II) with an RNA of known structure, tRNAPhe, and with the IVS RNA were studied as a function of temperature, ionic strength and ethidium concentration. Based on the comparison of the reaction with these two RNAs, we conclude that the dye is a very useful probe for structural regions of large RNAs, while it provides more limited structural information about the small, compact tRNA molecule.  相似文献   

18.
The RNA-catalysed self-splicing reaction of group II intron RNA is assumed to proceed by two consecutive transesterification steps, accompanied by lariat formation. This is effectively analogous to the small nuclear ribonucleoprotein (snRNP)-mediated nuclear pre-mRNA splicing process. Upon excision from pre-RNA, a group II lariat intervening sequence (IVS) has the capacity to re-integrate into its cognate exons, reconstituting the original pre-RNA. The process of reverse self-splicing is presumed to be a true reversion of both transesterification steps used in forward splicing. To investigate the fate of the esterified phosphate groups in splicing we assayed various exon substrates (5'E-*p3'E) containing a unique 32P-labelled phosphodiester at the ligation junction. In combined studies of alternating reverse and forward splicing we have demonstrated that the labelled phosphorus atom is displaced in conjunction with the 3' exon from the ligation junction to the 3' splice site and vice versa. Neither the nature of the 3' exon sequence nor its sequence composition acts as a prominent determinant for both substrate specificity and site-specific transesterification reactions catalysed by bI1 IVS. A cytosine ribonucleotide (pCp; pCOH) or even deoxyoligonucleotides could function as an efficient substitute for the authentic 3' exon in reverse and in forward splicing. Furthermore, the 3' exon can be single monophosphate group. Upon incubation of 3' phosphorylated 5' exon substrate (5'E-*p) with lariat IVS the 3'-terminal phosphate group is transferred in reverse and forward splicing like an authentic 3' exon, but with lower efficiency. In the absence of 3' exon nucleotides, it appears that substrate specificity is provided predominantly by the base-pairing interactions of the intronic exon binding site (EBS) sequences with the intron binding site (IBS) sequences in the 5' exon. These studies substantiate the predicted transesterification pathway in forward and reverse splicing and extend the catalytic repertoire of group II IVS in that they can act as a potential and sequence-specific transferase in vitro.  相似文献   

19.
A group I intron from a bacterial tRNA precursor has been converted into an RNA enzyme that catalyzes the efficient polymerization of oligoribonucleotide analogs of tRNA exons using a reaction scheme consisting of multiple cycles of reverse and forward exon ligation reactions. Here, we present results showing that this system represents a novel and useful tool for the analysis of 3' splice site reactions of group I ribozymes. First, analysis of variant substrates containing base substitutions in group I secondary structure elements P1, P9.0 and P10 confirms that exon polymerization is dependent on these structures, and therefore constitutes an appropriate and relevant model system for studying the exon ligation step of splicing. Second, to probe interactions between the intron's catalytic core and the bases and backbone of the P1/P10 reaction helix, two successful strategies for separating the internal guide sequence from the intron core were devised. One such strategy uses a construct in which the reaction helix interacts functionally with the catalytic core using only tertiary contacts. Further stabilization of this interaction through the inclusion of a 7 bp intermolecular P2 helix generates increased reaction efficiency. Third, when provided with two reaction helices, the ribozyme synthesizes mixed polymers through a mechanism that involves sequential binding and release of the duplexes. Fourth, in these reactions, turnover of the external guide sequence requires unwinding and annealing of the P2 helix, suggesting that P2 unwinding may occur during group I splicing. These results provide novel experimental tools to probe the relatively poorly understood 3' splice site reactions of group I introns, and may be relevant to ribozyme-catalyzed assembly and recombination of oligomers in prebiotic scenarios.  相似文献   

20.
Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5' resected end of a duplex DNA containing a 3' tail. The joining reaction occurs with high efficiency when the sequence of the 3' tail is complementary to that of the scissile strand immediately 5' of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3' flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号