首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study analyses the two-dimensional distribution of surface mechanomyographic (MMG) signal generated by the activation of single motor units located in three transverse positions in the tibialis anterior muscle. In 12 healthy volunteers, surface MMG signals were recorded from the tibialis anterior muscle with a 3x4 grid of accelerometers spaced by 20 and 30mm in the transverse and longitudinal direction. Three intramuscular electromyographic (EMG) signals were recorded with wire electrodes inserted 20-mm apart, between the first and second most proximal accelerometers of each column of the grid. The subject was asked to activate three different motor units (target motor units) in three contractions with visual feedback from each of the three intramuscular recordings (three locations). The MMG signals from the 12 accelerometers were averaged using the intramuscular single motor unit action potentials as trigger in order to obtain surface motor unit acceleration maps (MUAMs). The peak-to-peak value of the averaged MMG depended on motor unit location (P<0.001) and on the transverse position of the accelerometer in the grid (P<0.05). Moreover, MUAM amplitude depended on the interaction between motor unit location and transverse accelerometer position (P<0.05), demonstrating an influence of motor unit location on the generated MUAM. The observed dependency of MUAMs on motor unit location provides a quantitative analysis of the effect of the volume conductor on the recorded surface MMG signal.  相似文献   

2.
The purpose of this study was to test whether surface mechanomyogram (MMG) recorded on the skin reflects the contractile properties of individual motor units in humans. Eight motor units in the medial gastrocnemius muscle were identified, and trains of stimulation at 5, 10, 15, and 20 Hz were delivered to each isolated motor unit. There was a significant positive correlation between the duration of MMG and twitch duration. MMG amplitude decreased with increasing stimulation frequency. Reductions in MMG amplitude were in parallel with the reductions in force fluctuations, and the rate of change in both was positively correlated across the motor units. Rate of change in MMG amplitude against force was negatively correlated to half relaxation time and twitch duration. Similar negative correlations were found between force fluctuations and contractile properties. These results provide evidence supporting a direct relation between MMG and contractile properties of individual motor units within the gastrocnemius muscle, indicating that surface MMG is dependent on the contractile properties of the activated motor units in humans.  相似文献   

3.
The purpose of this review is to examine the literature that has investigated the potential relationship between mechanomyographic (MMG) frequency and motor unit firing rates. Several different experimental designs/methodologies have been used to address this issue, including: repetitive electrical stimulation, voluntary muscle actions in muscles with different fiber type compositions, fatiguing and non-fatiguing isometric or dynamic muscle actions, and voluntary muscle actions in young versus elderly subjects and healthy individuals versus subjects with a neuromuscular disease(s). Generally speaking, the results from these investigations have suggested that MMG frequency is related to the rate of motor unit activation and the contractile properties (contraction and relaxation times) of the muscle fibers. Other studies, however, have reported that MMG mean power frequency (MPF) does not always follow the expected pattern of firing rate modulation (e.g. motor unit firing rates generally increase with torque during isometric muscle actions, but MMG MPF may remain stable or even decrease). In addition, there are several factors that may affect the frequency content of the MMG signal during a voluntary muscle action (i.e. muscle stiffness, intramuscular fluid pressure, etc.), independent of changes in motor unit firing rates. Despite the potential influences of these factors, most of the evidence has suggested that the frequency domain of the MMG signal contains some information regarding motor unit firing rates. It is likely, however, that this information is qualitative, rather than quantitative in nature, and reflects the global motor unit firing rate, rather than the firing rates of a particular group of motor units.  相似文献   

4.
The mechanomyographic (MMG) signal analysis has been performed during single motor unit (MU) contractions of the rat medial gastrocnemius muscle. The MMG has been recorded as a muscle surface displacement by using a laser distance sensor. The profiles of the MMG signal let to categorize these signals for particular MUs into three classes. Class MMG-P (positive) comprises MUs with the MMG signal similar to the force signal profile, where the distance between the muscle surface and the laser sensor increases with the force increase. The class MMG-N (negative) has also the MMG profile similar to the force profile, however the MMG is inverted in comparison to the force signal and the distance measured by using laser sensor decreases with the force increase. The third class MMG-M (mixed) characterize the MMG which initially increases with the force increases and when the force exceeds some level it starts to decrease towards the negative values. The semi-pennate muscle model has been proposed, enabling estimation of the MMG generated by a single MU depending on its localization. The analysis have shown that in the semi-pennate muscle the localization of the MU and the relative position of the laser distance sensor determine the MMG profile and amplitude. Thus, proposed classification of the MMG recordings is not related to the physiological types of MUs, but only to the MU localization and mentioned sensor position. When the distance sensor is located over the middle of the muscle belly, a part of the muscle fibers have endings near the location of the sensor beam. For the MU MMG of class MMG-N the deflection of the muscle surface proximal to the sensor mainly influences the MMG recording, whereas for the MU MMG class MMG-P, it is mainly the distal muscle surface deformation. For the MU MMG of MMG-M type the effects of deformation within the proximal and distal muscle surfaces overlap. The model has been verified with experimental recordings, and its responses are consistent and adequate in comparison to the experimental data.  相似文献   

5.
The aim of this study was to compare the force (F) and the muscle transverse diameter changes during electrical stimulation of the motor nerve. In four cats the exposed motor nerves of the medial gastrocnemius were stimulated as follows: (a) eight separate trials at fixed firing rates (FR) from 5 to 50 Hz (9 s duration, supramaximal amplitude); (b) 5 to 50 Hz linear sweep in 2.5, 5, 7.5 and 10 s (supramaximal amplitude, separate trials); (c) four separate trials at 40 Hz, the motor units (MUs) being orderly recruited in 2.5, 5, 7.5 and 10 s. The muscle surface displacement was detected by a laser distance sensor pointed at the muscle surface. The resulting electrical signal was termed surface mechanomyogram (MMG). In stimulation patterns (a) and (b) the average F and MMG increased with FR. With respect to their values at 50 Hz the amplitude of the unfused signal oscillations at 5 Hz was much larger in MMG than in force. The signal rising phase was always earlier in MMG than in F. In (c) trials, F increased less in the first than in the second half of the recruiting time. MMG had an opposite behaviour. The results indicate that the force and the lateral displacement are not linearly related. The different behaviour of F and MMG, from low to high level of the MUs' pool activation, suggests that the force generation and the muscle dimensional change processes are influenced by different components of the muscle mechanical model.  相似文献   

6.
A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7 ± 1 hand movements with an accuracy of 90 ± 4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98 ± 3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement.  相似文献   

7.
In previous studies on mechanomyogram (MMG) signals no analysis of these signals accompanying force generation has been performed. Therefore, we have recorded MMG signals (previously referred to as muscle sound or acoustomyographic signals) during voluntary contractions of forefinger flexor muscles in 31 young subjects. These subjects made contractions to produce force records of triangular or trapeziform shape. The peak target force amounted to 10, 20 or 40 N which represented less than 40% of maximal voluntary contraction. The MMG signals during the transient phases of force generation at three different rates were analysed. The MMG intensity level calculated for MMG records and the peak-to-peak amplitude of MMG signals correlated with both the velocity of force increase and the contraction force. The occurrence of the strongest MMG signals corresponded to changes in contractile force. Therefore, it is suggested that measurements of these parameters could be a useful tool in studies of changes in contractile force. Accepted: 11 March 1998  相似文献   

8.
The purpose of this investigation was to determine the effect of hyperhydration on the electromyographic (EMG) and mechanomyographic (MMG) responses during isometric and isokinetic muscle actions of the biceps brachii. Eight (22.1 +/- 1.8 years, 79.5 +/- 22.8 kg) subjects were tested for maximal isometric, submaximal isometric, and maximal concentric isokinetic muscle strength in either a control (C) or hyperhydrated (H) state induced by glycerol ingestion while the EMG and MMG signals were recorded. Although fluid retention was significantly greater during the H protocol, the analyses indicated no change in torque, EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, or MMG MPF with hyperhydration. These results indicated that glycerol-induced fluid retention does not affect the torque-producing capabilities of a muscle, the impulses (EMG) going to a muscle, or muscular vibrations (MMG). It has been suggested that EMG and MMG can be used as direct electrical/mechanical monitoring, which could be presented to trainers and athletes; however, before determining the utility of these signals, the MMG and EMG responses should be examined under a variety of conditions such as in the present study.  相似文献   

9.
The relationship between surface myoelectric signal parameters and the level of voluntary or electrically elicited contractions was studied in 32 experiments on the tibialis anterior muscle of 22 healthy human subjects. Contractions were performed at 20 and 80% of the maximum voluntary contraction torque. Two levels of stimulation current were used, yielding, respectively, a maximum M wave and an M wave approximately 30% of the maximum. A four-bar electrode probe was used to detect single- and double-differential signals from which mean and median frequency of the power spectrum and average muscle fiber conduction velocity were estimated. Measurements obtained from voluntary contractions showed a positive correlation between contraction levels and both conduction velocity and spectral parameters. Conduction velocity increased by 21.2 +/- 10.9% when voluntary contraction level increased from 20 to 80% of the maximal value. Spectral parameters increased by similar amounts. Tetanic electrical stimulation was applied to a muscle motor point for 20 s via surface electrodes. Rectangular current pulses with 0.1-ms width and frequencies of 20, 25, 30, 35, and 40 Hz were used. Four types of behavior were observed with increasing stimulation level: 1) the two spectral parameters and conduction velocity both increased with stimulation in 15 experiments, 2) the two spectral parameters decreased and conduction velocity increased in 8 experiments, 3) the two spectral parameters and conduction velocity both decreased in 6 experiments, and 4) the two spectral parameters increased and conduction velocity decreased in 3 experiments. Conduction velocity increased with increasing stimulation current in 72% of the experiments, indicating a recruitment order similar to that of voluntary contractions, although it decreased in the other 28% of the cases, indicating a reverse order of recruitment. Contrary to what is observed in direct stimulation of nerves, motor units are not in general recruited in reverse order of size during electrical stimulation of a muscle motor point. This discrepancy may be the result of geometric factors or a lack of correlation between axonal branch diameter and the diameter of the parent motoneuron axon. Changes of conduction velocity and spectral parameters in opposite directions may be the result of the combined effect of the motor unit recruitment order and of the different tissue filtering function associated with the geometric location of the recruited motor units within the muscle.  相似文献   

10.
It has recently been shown that motor units in human medial gastrocnemius (MG), activated during standing, occupy relatively small territories along the muscle’s longitudinal axis. Such organisation provides potential for different motor tasks to produce differing regional patterns of activity. Here, we investigate whether postural control and nerve electrical stimulation produce equal longitudinal activation patterns in MG. Myoelectric activity, at different proximal–distal locations of MG, was recorded using a linear electrode array. To ensure differences in signal amplitude between channels did not result from local, morphological factors two experimental protocols were completed: (i) quiet standing; (ii) electrical stimulation of the tibial nerve. Averaged, rectified values (ARVs) were calculated for each channel in each condition. The distribution of signals along electrode channels was described using linear regression and differences between protocols at each channel determined as the ratio between mean ARV from standing: stimulation protocols. Ratio values changed systematically across electrode channels in seven (of eight) participants, with larger values in distal channels. The distribution of ARV along MG therefore differed between experimental conditions. Compared to fibres of units activated during MG nerve stimulation, units activated during standing may have a tendency to be more highly represented in the distal muscle portion.  相似文献   

11.
The contractile properties of muscle are usually investigated by analysing the force signal recorded during electrically elicited contractions. The electrically stimulated muscle shows surface oscillations that can be detected by an accelerometer; the acceleration signal is termed the surface mechanomyogram (MMG). In the study described here we compared, in the human tibialis anterior muscle, changes in the MMG and force signal characteristics before, and immediately after fatigue, as well as during 6 min of recovery, when changes in the contractile properties of muscle occur. Fatigue was induced by sustained electrical stimulation. The final aim was to evaluate the reliability of the MMG as a tool to follow the changes in the mechanical properties of muscle caused by fatigue. Because of fatigue, the parameters of the force peak, the peak rate of force production and the peak of the acceleration of force production (d2F/dt2) decreased, while the contraction time and the half-relaxation time (1/2-RT) increased. The MMG peak-to-peak (p-p) also decreased. The attenuation rate of the force oscillation amplitude and MMG p-p at increasing stimulation frequency was greater after fatigue. With the exception of 1/2-RT, all of the force and MMG parameters were restored within 2 min of recovery. A high correlation was found between MMG and d2F/dt2 in un-fatigued muscle and during recovery. In conclusion, the MMG reflects specific aspects of muscle mechanics and can be used to follow the changes in the contractile properties of muscle caused by localised muscle fatigue.  相似文献   

12.
Muscle surface displacement is a mechanical event taking place simultaneously with the tension generation at the tendon. The two phenomena can be studied by the surface mechanomyogram signal (MMG) (produced by a laser distance sensor) and the force signal (from a load cell). The aim of this paper was to provide data on the reliability of the laser detected MMG in muscle mechanics research. To this purpose it was verified if the laser detected MMG was suitable to estimate a frequency response in the cat medial gastrocnemius and its frequency response was compared with the one retrieved by the force signal at the tendon level. The force and MMG from the exposed medial gastrocnemius of four cats were analysed. The frequency response was investigated by sinusoidally changing the number of orderly recruited motor units, in different trials, in the 0.4-6 Hz range. It resulted that it was possible to model the force and MMG frequency response by a critically damped second-order system with two real double poles and a pure time delay. On the average, the poles were at 1.83 Hz (with 22.6 ms delay) and at 2.75 Hz (with 38 ms delay) for force and MMG, respectively. It can be concluded that MMG appears to be a reliable tool to investigate the muscle frequency response during stimulated isometric contraction. Even though not statistically significant. the differences in the second-order system parameters suggest that different components of the muscle mechanical model may specifically affect the force or MMG.  相似文献   

13.
The study of the amplitude of respiratory muscle mechanomyographic (MMG) signals could be useful in clinical practice as an alternative non-invasive technique to assess respiratory muscle strength. The MMG signal is stochastic in nature, and its amplitude is usually estimated by means of the average rectified value (ARV) or the root mean square (RMS) of the signal. Both parameters can be used to estimate MMG activity, as they correlate well with muscle force. These estimations are, however, greatly affected by the presence of structured impulsive noise that overlaps in frequency with the MMG signal. In this paper, we present a method for assessing muscle activity based on the Lempel–Ziv algorithm: the Multistate Lempel–Ziv (MLZ) index. The behaviour of the MLZ index was tested with synthesised signals, with various amplitude distributions and degrees of complexity, and with recorded diaphragm MMG signals. We found that this index, like the ARV and RMS parameters, is positively correlated with changes in amplitude of the diaphragm MMG components, but is less affected by components that have non-random behaviour (like structured impulsive noise). Therefore, the MLZ index could provide more information to assess the MMG–force relationship.  相似文献   

14.
The influence of activity-related changes in tension on properties of the mechanomyogram (MMG) was investigated in fast fatigable, fast resistant and slow motor units (MUs). A standard fatigue test was used in which rhythmically repeated unfused tetani were evoked. The amplitudes of the rise in tension of the first and the last contraction within the unfused tetanus and the amplitudes of accompanying signals in MMG were calculated. For fast fatigable MUs a parallel decrease in the amplitudes of both analysed contractions and in the amplitudes of accompanying MMG signals during the fatigue test was observed. For majority of fast resistant MUs at the beginning of the fatigue test a potentiation occurred and this phenomenon increased the tension of the first contraction and of the peak tetanic tension. However, the potentiation coincided also with a decrease of the amplitude of the last contraction in the tension recording of an unfused tetanus. The MMG reflected both, the increase of amplitude of the first contraction and the decrease of the amplitude of the further contractions within the tetanus. The single twitch contraction evoked immediately before and after the fatigue test was additionally recorded. A decrease (fatigue) or an increase (potentiation) of the twitch tension after the fatigue test was reflected by a decrease or an increase in the amplitude of MMG, respectively. However, the fatigue failed to change significantly the time parameters of MMG. To conclude, fatigue and potentiation can occur during activity of fast MUs and both these phenomena involve changes in the amplitude of oscillations in tension of unfused tetani which are reflected in MMG.  相似文献   

15.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

16.
Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified LFF. EMG and MMG were recorded from ECR during static test contractions at 5% and 80% MVC. Electrical stimulation, MVC, and test contractions were performed before 10%MVC10 min and at 10, 30, 90 and 150 min recovery. In spite of no changes in MVC, LFF persisted up to 150 min recovery but did not develop in a control experiment omitting 10%MVC10 min. In 5% MVC tests significant increase was found in time domain of EMG from 0.067+/-0.028 mV before 10%MVC10 min to 0.107+/-0.049 and 0.087+/-0.05 mV at 10 and 30 min recovery, respectively, and of the MMG from 0.054+/-0.039 ms(-2) to 0.133+/-0.104 and 0.127+/-0.099 ms(-2), respectively. No consistent changes were found in 80% MVC tests. In conclusion, non-exhaustive low-force muscle contraction resulted in prolonged LFF that in part was identified by the EMG and MMG signals.  相似文献   

17.
The purpose of this study was to compare a piezoelectric contact sensor with an accelerometer for measuring the mechanomyographic (MMG) signal from the biceps brachii during submaximal to maximal isokinetic and isometric forearm flexion muscle actions. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), 10 adults (mean+/-SD age=22.8+/-2.7yrs) performed randomly ordered, submaximal step muscle actions of the dominant forearm flexors in 20% increments from 20% to 80% PT and MVC. Surface MMG signals were recorded simultaneously from a contact sensor and an accelerometer placed over the belly of the biceps brachii muscle. During the isokinetic and isometric muscle actions, the contact sensor and accelerometer resulted in linear increases in normalized MMG amplitude with torque (r(2) range=0.84-0.97) but the linear slope of the normalized MMG amplitude versus isokinetic torque relationship for the accelerometer was less (p<0.10) than that of the contact sensor. There was no significant (p>0.05) relationship for normalized MMG mean power frequency (MPF, %max) versus isokinetic and isometric torque for the contact sensor, but the accelerometer demonstrated a quadratic (R(2)=0.94) or linear (r(2)=0.83) relationship for the isokinetic and isometric muscle actions, respectively. There were also a number of significant (p<0.05) mean differences between the contact sensor and accelerometer for normalized MMG amplitude or MPF values. These findings indicated that in some cases involving dynamic and isometric muscle actions, the contact sensor and accelerometer resulted in different torque-related responses that may affect the interpretation of the motor control strategies involved.  相似文献   

18.
We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar fine-wire electrodes and subsequently decomposed into their constituent motor unit action potentials to obtain the motor unit firing times. In addition, we measured the whole muscle mechanical properties during the fatigue task using electrical stimulation. The firing rate of motor units first decreased within the first 10-20% of the endurance time of the contractions and then increased. The firing rate increase was accompanied by recruitment of additional motor units as the force output remained constant. The elicited twitch and tetanic torque responses first increased and then decreased. The two processes modulated in a complementary fashion at the same time. Our data suggest that, when the vastus lateralis muscle is activated to maintain a constant torque output, its motoneuron pool receives a net excitatory drive that first decreases to compensate for the short-lived potentiation of the muscle force twitch and then increases to compensate for the diminution of the force twitch. The underlying inverse relationship between the firing rate and the recruitment threshold that has been reported for nonfatigued contractions is maintained. We, therefore, conclude that the central nervous system control of vastus lateralis motor units remains invariant during fatigue in submaximal isometric isotonic contractions.  相似文献   

19.
The purpose of this study was to describe and examine the variations in recruitment patterns of motor units (MUs) in biceps brachii (BB) through a range of joint motion during dynamic eccentric and concentric contractions. Twelve healthy participants (6 females, 6 males, age = 30 ± 8.5 years) performed concentric and eccentric contractions with constant external loading at different levels. Surface electromyography (EMG) and mechanomyography (MMG) were recorded from BB. The EMGs and MMGs were decomposed into their intensities in time–frequency space using a wavelet technique. The EMG and MMG spectra were then compared using principal component analysis. Variations in total intensity, first principal component (PCI), and the angle θ formed by first component (PCI) and second component (PCII) loading scores were explained in terms of MU recruitment patterns and elbow angles. Elbow angle had a significant effect on dynamic concentric and eccentric contractions. The EMG total intensity was greater for concentric than for eccentric contractions in the present study. MMG total intensity, however, was lower during concentric than during eccentric contractions. In addition, there was no significant difference in θ between concentric and eccentric contractions for both EMG and MMG. Selective recruitment of fast MUs from BB muscle during eccentric muscle contractions was not found in the present study.  相似文献   

20.

Background  

Recently, pattern recognition methods have been deployed in the classification of multiple activation states from mechanomyogram (MMG) signals for the purpose of controlling switching interfaces. Given the propagative properties of MMG signals, it has been suggested that MMG classification should be robust to changes in sensor placement. Nonetheless, this purported robustness remains speculative to date. This study sought to quantify the change in classification accuracy, if any, when a classifier trained with MMG signals from the muscle belly, is subsequently tested with MMG signals from a nearby location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号