首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
To analyze the effects of high concentrations of zinc ions on oxidative stress protection, we developed an original model of zinc-resistant HeLa cells (HZR), by using a 200 microM zinc sulfate-supplemented medium. Resistant cells specifically accumulate high zinc levels in intracellular vesicles. These resistant cells also exhibit high expression of metallothioneins (MT), mainly located in the cytoplasm. Exposure of HZR to Zn-depleted medium for 3 or 7 d decreases the intracellular zinc content, but only slightly reduces MT levels of resistant cells. No changes of the intracellular redox status were detected, but zinc resistance enhanced H2O2-mediated cytotoxicity. Conversely, zinc-depleted resistant cells were protected against H2O2-induced cell death. Basal- and oxidant-induced DNA damage was increased in zinc resistant cells. Moreover, measurement of DNA damage on zinc-depleted resistant cells suggests that cytoplasmic metal-free MT ensures an efficient protection against oxidative DNA damage, while Zn-MT does not. This newly developed Zn-resistant HeLa model demonstrates that high intracellular concentrations of zinc enhance oxidative DNA damage and subsequent cell death. Effective protection against oxidative damage is provided by metallothionein under nonsaturating zinc conditions. Thus, induction of MT by zinc may mediate the main cellular protective effect of zinc against oxidative injury.  相似文献   

2.
Previous studies have shown that in a cell-free system, metallothionein (MT) releases zinc when the environment becomes oxidized and the released zinc is transferred to a zinc-binding protein if such a protein is present. However, it is unknown whether and how zinc transfers from MT to other proteins in vivo. The present study was undertaken to test the hypothesis that if zinc transfer from MT to other proteins occurs in vivo, the transfer would proceed through a direct interaction between MT and a specific group of proteins. The heart extract obtained from MT-null mice was incubated with 65Zn-MT or 65ZnCl2 and the proteins receiving 65Zn were separated by blue-native PAGE (BN-PAGE) or sodium dodecyl sulfate-PAGE (SDS-PAGE), and detected by autoradiography. A unique 65Zn-binding band was observed from the 65Zn-MT-incubated, but not the 65ZnCl2-incubated preparation. The analysis using matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry revealed that mitochondrial aconitase (m-aconitase) was among the proteins accepting Zn directly from Zn-MT. The m-aconitase, not the cytosolic aconitase (c-aconitase), was co-immunoprecipitated with MT. This study demonstrates that MT transfers zinc to m-aconitase through a direct interaction.  相似文献   

3.
To investigate Zn and Cu accumulation and isometallothionein (iso-MT) induction in ascites-sarcoma S180A cells, 5 micrograms of Zn2+ or Cu2+/g body weight was administered to tumour-bearing mice intraperitoneally. In the tumour cells the Zn or Cu concentration increased more than in the host liver, which is the target organ for those metals; the maximum Zn or Cu level was about 2-3 times that in the host liver. The amounts of Zn-MT or Cu-MT accumulated in the tumour cells and host liver were proportional to such dose accumulation levels in the each cytosol; the maximum level of Zn-MT or Cu-MT was 4 or 2 times higher than in the host liver. MT accumulated in the tumour cells showed two subfractions (MT-1 and MT-2); the ratio of Zn (or Cu) bound to MT-1 to that bound to MT-2 in the host liver and tumour cells was 1.0 (or 1.0) and 0.7 (or 0.25) respectively, suggesting that the induction level of MT-2 in the tumour cells is more than that of MT-1. The h.p.l.c. profiles (using an anion-exchange column) of the isolated MT-1 and MT-2 subfractions from Zn-treated normal-mouse liver showed a single peak (MT-1-1) and two peaks (MT-2-1 and MT-2-2) respectively; mouse MTs were separated into three isoforms. In the ascites cells, the MT fraction obtained by a gel filtration was also separated into three isoforms; however, the amount of MT-2-1 isoform was 3 times that in the Zn-treated normal-mouse liver.  相似文献   

4.
Metallothionein (MT) is a strong antioxidant, due to a large number of thiol groups in the MT molecule and MT has been found in the nucleus. To investigate whether MT can directly protect DNA from damage induced by hydroxyl radical, the effects of MTs on DNA strand scission due to incubation with ferric ion-nitrilotriacetic acid and H2O2 (Fe3+ -NTA/H2O2) were studied. The Fe3+-NTA/H2O2 resulted in a higher rate of deoxyribose degradation, compared to incubation of Fe3+/H2O2, presumably mediated by the formation of hydroxyl radicals (*OH). This degradation was inhibited by either Zn-MT or Cd-MT, but not by Zn2+ or Cd2+ at similar concentrations. The Fe3+ -NTA/H2O2 resulted in a concentration dependent of increase in DNA strand scission. Damage to the sugar-phosphodiester chain was predominant over chemical modifications of the base moieties. Incubation with either Zn-MT or Cd-MT inhibited DNA damage by approximately 50%. Preincubation of MT with EDTA and N-ethylmaleimide, to alkylate sulfhydryl groups of MT, resulted in MT that was no longer able to inhibit DNA damage. These results indicates that MT can protect DNA from hydroxyl radical attack and that the cysteine thiol groups of MT may be involved in its nuclear antioxidant properties.  相似文献   

5.
The buckwheat metallothionein-like (MT3) gene expression was studied throughout seed and leaf development, as well as under the influence of different external stimuli. MT3 mRNAs were detected from the early stage of seed development to the end of maturation, reaching the highest level during the mid-maturation stage. High MT3 mRNA level was noticed for both green and senescent leaves. The influence of raising Cu ion concentrations on MT3 gene expression was studied only in leaves, while the effect of Zn ions was analyzed through seed development as well. It was found that Cu and Zn ions had stimulatory effects on expression in leaves. MT3 expression was significantly enhanced in the early stage of seed development in response to Zn ions, while after this stage, influence of Zn ions was not detected. After H2O2/NaCl treatment, MT3 mRNA level was decreased in green leaves, contrary to senescent leaves where expression levels remained unchanged. H2O2 treatment caused the increase of MT3 mRNA levels in the mid-maturation stage of seed development. NaCl had no effect on expression levels in seeds. According to obtained results, proposed functions in different plant organs regarding oxidative stress and metal homeostasis are discussed.  相似文献   

6.
Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.  相似文献   

7.
研究探讨锌离子胁迫下蛹虫草Cordyceps militaris金属硫蛋白的产生及性质。蛹虫草菌丝体以15g/L Zn2+在10L发酵罐中诱导培养56h后收集,产率为每升发酵液收集12.021g菌丝体(干重),细胞破碎取上清液通过两次凝胶柱层析,冷冻干燥得到蛹虫草金属硫蛋白纯品。利用Bradford法进行蛋白质含量测定,用银饱和分析法结合原子吸收光谱(AAS)测定MT含量,发酵终点处金属硫蛋白含量为12.876mg/g菌丝体(湿重)。用电喷雾质谱法测得金属硫蛋白的分子量为7 390Da,用Ellman’s方法和火焰原子吸收法分别测得每分子蛋白质含有14个巯基、结合5个Zn原子。氨基酸组成分析结果显示,每分子蛋白质共含57个氨基酸,其中含有13个半胱氨酸,疏水氨基酸占29.8%,且含有组氨酸。以上表明,研究中的蛹虫草金属硫蛋白与哺乳动物金属硫蛋白结构差异较大,但与酵母菌金属硫蛋白结构组成类似。  相似文献   

8.
二价铅离子与金属硫蛋白相互作用的研究   总被引:5,自引:0,他引:5  
通过紫外吸收光谱和平衡透析法研究了二价铅离子同脱金属硫蛋白(apo-MT)、锌-金属硫蛋白(Zn-MT)的相互作用,证实Pb(Ⅱ)是以金属巯基复合物(金属巯基比为1∶2)的形式同金属硫蛋白结合,表观离解常数(KD)为8.71×10-7mol/L.在自由铅浓度达到6.52×10-6mol/L的条件下,铅离子即可将Zn-MT上的Zn完全取代下来.通过EDTA、DTNB竞争反应、圆二色性(CD)光谱分析,认为Pb-MT的金属巯基复合物不同于Zn-MT中Zn与巯基形成的紧密的正四面体结构,而是可能形成一种三级结构相对松散、热力学上不稳定的Cys-S-Pb-S-Cys平面形结构.研究认为金属硫蛋白的两种亚型MT-Ⅰ、MT-Ⅱ与Pb(Ⅱ)的结合能力并无显著差异  相似文献   

9.
The influence of hepatic metallothionein (MT) and zinc (Zn) on glycolysis was investigated in primary cultures of mouse hepatocytes prepared from MT-normal (+/+) and MT-null (−/−) mice. In MT +/+ mice, a close relationship was observed between the Zn concentration in the incubation medium (10–150 μM), increased MT levels in the cells, and increased glycolysis (accumulation of lactate + pyruvate) over 24 h, with significant effects seen at physiological levels of Zn (10–25 μM). Hepatocytes from MT −/− mice had significantly lower basal rates of glycolysis and demonstrated increased glycolysis only at Zn concentrations of 50 μM or greater. The lactate: pyruvate ratio was higher in the MT +/+ hepatocytes. The oxidation of endogenous fatty acid (accumulation of the ketone bodies, 3-hydroxybutyrate and acetoacetate) was initially greater in the MT +/+ hepatocytes, although only MT −/− hepatocytes showed increased ketone body production in response to Zn. The 3-hydroxybutyrate: acetoacetate ratio was higher in the MT +/+ hepatocytes and increased with increasing Zn concentrations. Intracellular Zn accumulation was 60% greater in the MT +/+ hepatocytes, with approximately 80% of the extra Zn associated with MT. The results implicate MT-associated Zn rather than increased intracellular Zn per se in the regulation of hepatic carbohydrate metabolism.  相似文献   

10.
Kinetic lability of zinc bound to metallothionein in Ehrlich cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Ehrlich ascites-tumour cells normally contain a large concentration of Zn-metallothionein. When cells are placed in culture media, containing or pretreated with the metal-ion-chelating resin Chelex-100, they stop growing, remain viable and lose zinc specifically from the metallothionein (MT) pool. The kinetics of loss of zinc are first-order and are very rapid, having a rate constant of greater than or equal to 0.6 h-1. MT protein labelled with 35S is biodegraded with a rate constant of 0.07-0.014 h-1 in control cells, 0.08 h-1 in cells exposed to the zinc-deficient medium and 0.12-0.18 h-1 in cells treated directly with Chelex. Over the 6 h period in which zinc is totally lost from Zn-MT there is relatively little decrease in MT-like protein as measured by cadmium-binding to the 10,000-Mr protein fraction. Other pools of zinc and 35S-labelled protein turn over more slowly. There is no loss of zinc from rat liver Zn-MT that is dialysed against Chelex to model the possible reaction of the resin with Ehrlich-cell Zn-MT. However, Chelex does compete slowly for MT-bound zinc when resin and MT are directly mixed. Analysis of the known and possible pathways of zinc metabolism in cells in relationship to these rate constants shows that biodegradation of MT protein cannot account for the rate of loss of zinc from Zn-MT.  相似文献   

11.
This paper will be the first to discuss the in vivo and in vitro properties of a Pd(II) complex, K2PdCl4, interacting with metallothioneins (MTs). In vivo experiments revealed that intraperitoneal injections of K2PdCl4 into rabbits led to the simultaneous synthesis of Pd-MT in the kidney and Zn7MT in the liver. The renal Pd-MT complex contains 3.6 +/- 0.3 Pd, 2.1 +/- 0.2 Zn, and 1.0 +/- 0.1 Cu per mole protein. It was found that pre-treatment with Zn(NO3)2 before K2PdCl4 injections significantly enhanced renal Pd-MT level. The same pre-treatment also increases hepatic Zn-MT levels. These results strongly suggest that Pd(II) ions can be bound in vivo by MT existing in the rabbit kidneys to form Pd-MT. Gel-filtration chromatographic studies after the incubation of either native Cd5Zn2MT2 or Zn7MT2 with K2PdCl4 in vitro demonstrate that Pd(II) ions promote the non-oxidative oligomerization of native MTs. Increasing the level of Pd(II) relative to MT led to a concomitant increase in the apparent yield of MT oligomers. At relatively low Pd-MT ratio, Pd(II) is found predominantly in the oligomers while the monomeric products are chiefly composed of the reactants, Cd5Zn2MT2 or Zn7MT2. Based on our experimental data, the mechanisms of the reactions between Pd(II) and MTs in vivo and in vitro are discussed.  相似文献   

12.
Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of cysteine sulfinic acid of hyperoxidized peroxiredoxins (Prxs). Having high affinity toward H2O2, 2-Cys Prxs can efficiently reduce H2O2 at low concentration. We previously showed that Prx I is hyperoxidized at a rate of 0.072% per turnover even in the presence of low steady-state levels of H2O2. Here we examine the novel role of Srx in cells exposed to low steady-state levels of H2O2, which can be achieved by using glucose oxidase. Exposure of low steady-state levels of H2O2 (10-20 μm) to A549 or wild-type mouse embryonic fibroblast (MEF) cells does not lead to any significant change in oxidative injury because of the maintenance of balance between H2O2 production and elimination. In contrast, loss-of-function studies using Srx-depleted A549 and Srx-/- MEF cells demonstrate a dramatic increase in extra- and intracellular H2O2, sulfinic 2-Cys Prxs, and apoptosis. Concomitant with hyperoxidation of mitochondrial Prx III, Srx-depleted cells show an activation of mitochondria-mediated apoptotic pathways including mitochondria membrane potential collapse, cytochrome c release, and caspase activation. Furthermore, adenoviral re-expression of Srx in Srx-depleted A549 or Srx-/- MEF cells promotes the reactivation of sulfinic 2-Cys Prxs and results in cellular resistance to apoptosis, with enhanced removal of H2O2. These results indicate that Srx functions as a novel component to maintain the balance between H2O2 production and elimination and then protects cells from apoptosis even in the presence of low steady-state levels of H2O2.  相似文献   

13.
Metallothionein (MT), a cysteine-rich, metal-binding protein, is involved in homeostatic regulation of essential metals and protection of cells against oxidative injury. It has been shown that oxidative stress is associated with pathogenesis of osteoporosis and is capable of inhibiting osteoblastic differentiation of bone cells by nuclear factor-kappaB (NF-kappaB). In this study, the effect of MT on oxidative stress-induced inhibition of osteoblast differentiation was examined. 50-200 microM hydrogen peroxide-induced oxidative stress suppressed the osteoblastic differentiation process of primary mouse bone marrow stromal cells (BMSCs), manifested by a reduction in the differentiation marker alkaline phosphatase (ALP). The presence of exogenous MT (20-500 microM) or induction of endogenous MT by ZnCl2 (50-200 microM) could protect BMSCs against H2O2-induced inhibition of osteoblastic differentiation, manifested by a resumption of H2O2-inhibited ALP activity and ALP positive cells. Furthermore, adding exogenous MT or inducing endogenous MT expression impaired H2O2-stimulated NF-kappaB signaling. These data indicate the ability of MT to protect BMSCs against oxidative stress-induced inhibition of osteoblastic differentiation.  相似文献   

14.
氧化应激是诱导性多能干细胞(induced pluripotent stem cell, iPSC)在培养和应用中遇到的一个关键问题,探讨其作用机制具有重要的理论和实践意义。目前有关iPSC氧化应激的研究相对较少,Nrf2/HO-1信号通路在其中的作用尚不明了。因此,本研究以不同浓度的H2O2(100、200、300、400 μmol/L)处理人iPSC(hiPSC),分别在4 h和24 h于倒置显微镜下观察hiPSC及其饲养层细胞SNL氧化损伤的程度,通过碱性磷酸酶(alkaline phosphatase, AP)试剂盒和超氧化物阴离子荧光探针,分别检测hiPSC多能性和细胞活性氧(reactive oxygen species, ROS)水平,并通过qRT-PCR检测H2O2处理4 h后早期应激状态下Nrf2和HO 1 mRNA的表达水平,免疫细胞化学和Western印迹检测p-Nrf2和HO-1蛋白质的表达量。结果表明:hiPSC和SNL细胞的ROS水平呈H2O2剂量依赖性升高。除了100 μmol/L H2O2组hiPSC的细胞形态和多能性保持较好外,其余浓度H2O2均导致hiPSC出现不同程度损伤和死亡。但与SNL细胞相比,hiPSC中ROS水平相对较低,细胞状态也相对较好。SNL细胞中Nrf2和HO-1-mRNA表达的变化幅度与H2O2浓度呈线性相关,而hiPSC中Nrf2和HO-1表达的变化幅度与H2O2浓度之间并未呈现线性相关,其中Nrf2在100 μmol/L H2O2组表达量最高,而HO-1在200 μmol/L H2O2组表达量最高,意味着hiPSC氧化应激调控机制的复杂性。综上结果表明,hiPSC具有较好的抗氧化能力,其相关机制与Nrf2/HO-1信号通路有关,同时也可能涉及到其它相关通路的交互作用。  相似文献   

15.
Several studies have shown the role of thiol-rich proteins especially metallothionein (MT) in the therapeutic interventions against oxidative damage. Previously, we have provided strong evidence for the involvement of ROS in iron nitrilotriacetate (Fe-NTA)-induced renal toxicity, which may have relevance to its carcinogenicity. The purpose of this study was to evaluate the role of zinc metallothionein (Zn-MT) on the protection against Fe-NTA-induced renal oxidative damage. The results demonstrate that Zn-MT pretreatment provided protection against Fe-NTA-induced mortality in mice (40% protection). Similarly, Zn-MT pretreatment also provided protection against Fe-NTA-induced lipid peroxidation (26% inhibition, P < 0.001). It is proposed that Zn-MT protects kidney tissue against the noxious effect of Fe-NTA primarily by interference with lipid peroxides. It is concluded that Zn-MT may serve as an excellent physiological antioxidant against Fe-NTA-mediated renal oxidative damage.  相似文献   

16.
By manipulation of Cd and Zn concentrations in the medium, several phenotypes, differing in the contents of glutathione (GSH) and metallothionein (Mt), were derived from a parental clone of V79 Chinese hamster fibroblast. In some of these phenotypes, resistance to Cd and cross-resistance to oxidative stress was developed. The highest levels of GSH and Mt were found in cells which were rendered resistant to Cd by stepwise increases of Cd and Zn in the cell medium for over 50 passages. Upon removal of Cd/Zn from the medium of these cells or addition of Cd/Zn to the parental cell medium, changes of cellular GSH and Mt levels occurred to different extents. At the same time, changes in the resistance to Cd and H2O2 were observed. Good linear correlations were observed for Mt levels x resistance to Cd and for GSH levels x resistance to H2O2. Poor linear correlations were found for Mt levels x resistance to H2O2 or for GSH levels x resistance to Cd. Moreover, addition of Zn to the medium produced an increase in Mt content without affecting the GSH content. In this case no cross-resistance to oxidative stress was developed. Therefore, Mt which has been shown to be an excellent antioxidant in in vitro experiments, does not seem to play any major role against oxidative stress in Zn and Cd challenged cells. Most of the cross-resistance to oxidative stress in Cd challenged cells seems to be accounted for by the parallel increase in GSH.  相似文献   

17.
Many cell types contain metal-ion unsaturated metallothionein (MT). Considering the Zn(2+) binding affinity of metallothionein, the existence of this species in the intracellular environment constitutes a substantial "thermodynamic sink". Indeed, the mM concentration of glutathione may be thought of in the same way. In order to understand how apo-MT and the rest of the Zn-proteome manage to co-exist, experiments examined the in vitro reactivity of Zn-proteome with apo-MT, glutathione (GSH), and a series of common Zn(2+) chelating agents including N,N,N',N'-(2-pyridylethyl)ethylenediammine (TPEN), EDTA, and [(2,2'-oxyproplylene-dinitrilo]tetraacetic acid (EGTA). Less than 10% of Zn-proteome from U87mg cells reacted with apo-MT or GSH. In contrast, each of the synthetic chelators was 2-3 times more reactive. TPEN, a cell permeant reagent, also reacted rapidly with both Zn-proteome and Zn-MT in LLC-PK(1) cells. Taking a specific zinc finger protein for further study, apo-MT, GSH, and TPEN inhibited the binding of Zn(3)-Sp1 with its cognate DNA site (GC-1) in the sodium-glucose co-transporter promoter of mouse kidney. In contrast, preformation of Zn(3)-Sp1-(GC-1) prevented reaction with apo-MT and GSH; TPEN remained active but at a higher concentration. Whereas, Zn(3)-Sp1 is active in cells containing apo-MT and GSH, exposure of LLC-PK(1) cells to TPEN for 24h largely inactivated its DNA binding activity. The results help to rationalize the steady state presence of cellular apo-MT in the midst of the many, diverse members of the Zn-proteome. They also show that TPEN is a robust intracellular chelator of proteomic Zn(2+).  相似文献   

18.
Neutrophils which accumulate at sites of inflammation secrete a number of injurious oxidants which are highly reactive with protein sulfhydryls. The present study examined the possibility that this reactivity with thiols may cause protein damage by mobilizing zinc from cellular metalloproteins in which the metal is bound to cysteine. The ability of the three principal neutrophil oxidants, hypochlorous acid (HOCl), superoxide (.O2-), and hydrogen peroxide (H2O2), to cleave thiolate bonds and mobilize complexed zinc was compared using two model compounds (2,3-dimercaptopropanol and metallothionein peptide fragment 56-61), as well as metallothionein. With all compounds, 50 microM HOCl caused high rates of Zn2+ mobilization as measured spectrophotometrically with the metallochromic indicator 4-(2-pyridylazo)resorcinol. Xanthine (500 microM) plus xanthine oxidase (30 mU), which produced a similar concentration of .O2-, also effected a rapid rate of Zn2+ mobilization which was inhibited by superoxide dismutase but not catalase, indicating that .O2- is also highly reactive with thiolate bonds. In contrast, H2O2 alone was much less reactive at comparable concentrations. These data suggest that HOCl and .O2- can cause damage to cellular metalloproteins through the mobilization of complexed zinc. In view of the essential role played by zinc in numerous cellular processes, Zn2+ mobilization by neutrophil oxidants may cause significant cellular injury at sites of inflammation.  相似文献   

19.
Zinc prevention and treatment of alcoholic liver disease   总被引:9,自引:0,他引:9  
Alcoholic liver disease (ALD) is associated with decreases in zinc (Zn) and its major binding protein, metallothionein (MT), in the liver. Studies using animal models have shown that Zn supplementation prevents alcohol-induced liver injury under both acute and chronic alcohol exposure conditions. There are hepatic and extrahepatic actions of Zn in the prevention of alcoholic liver injury. Zn supplementation attenuates ethanol-induced hepatic Zn depletion and suppresses ethanol-elevated cytochrome P450 2E1 (CYP2E1) activity, but increases the activity of alcohol dehydrogenase in the liver; an action that is likely responsible for Zn suppression of alcohol-induced oxidative stress. Zn also enhances glutathione-related antioxidant capacity in the liver. At the cellular level, Zn inhibits alcohol-induced hepatic apoptosis partially through suppression of the Fas/FasL-mediated pathway. Zn supplementation preserves intestinal integrity and prevents endotoxemia, leading to inhibition of endotoxin-induced tumor necrosis factor-alpha (TNF-alpha) production in the liver. Zn also directly inhibits the signaling pathway involved in endotoxin-induced TNF-alpha production. These hepatic and extrahepatic effects of Zn are independent of MT. However, low levels of MT in the liver sensitize the organ to alcohol-induced injury, and elevation of MT enhances the endogenous Zn reservoir and makes Zn available when oxidative stress is imposed. Zn has a high potential to be developed as an effective agent in the prevention and treatment of ALD.  相似文献   

20.
Oxidative burst and metallothionein as a scavenger in macrophages   总被引:1,自引:0,他引:1  
The role of metallothionein (MT) in the scavenging of superoxide radicals (*O2-) generated by macrophages has been examined. The present work has focused on the effects of added cadmium, a known inducer of MT biosynthesis, on determined amounts of superoxide radicals produced by in vitro cultured rat peritoneal macrophages on their stimulation with phorbol-12-myristate-13-acetate (PMA). The levels of superoxide radicals (*O2-) have been found to decrease when cadmium was added to cells exposed to PMA. However, substantially lower levels of MT have been determined in this case compared to cells untreated with PMA. This effect could be reversed by incubation of the PMA and cadmium-treated cells with a reducing agent, 2-mercaptoethanol (2-ME). Results suggest that *O2- caused thiolate oxidation and subsequent metal loss, thus reducing the cellular MT content as quantified by the silver saturation METHOD: This conclusion is supported by cell-free experiments in which the oxidation of rabbit MT-I by a xanthine/xanthine-oxidase system could be reversed by its subsequent reduction with 2-ME. The data presented provide direct evidence of the involvement of MT in scavenging superoxide radicals in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号