首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

2.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

3.
Summary Developmental changes of thyrotropin-releasing hormone (TRH)-immunoreactive structures in the brain of mallard embryos were studied by means of immunocytochemistry (PAP technique). The primary antibody was generated against synthetic TRH. Immunoreactive neurons were first detected in the hypothalamus of 14-day-old embryos. By day 20, increasing numbers of immunoreactive perikarya were observed in the paraventricular nucleus, anterior preoptic region and supraoptic region. Immunoreactive fiber projections were seen in the median eminence as early as embryonic day 20; they occurred also in some extrahypothalamic regions (lateral septum, accumbens nucleus). The number and staining intensity of the cell bodies increased up to hatching, and continued to increase during the first week after hatching.  相似文献   

4.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

5.
The distribution of neurons giving rise to various descending fiber systems to brain-stem structures in the basal ganglia (including amygdaloid nuclei) and hypothalamus of the cat was studied by the retrograde axonal transport of horseradish peroxidase method. Neurons in the medial part of the central nucleus and of the magnocellular part of the basal nucleus of the amygdaloid group were shown to send axons to the dorsal hippocampus, substantia nigra, lateral part of the central gray matter, and the mesencephalalic reticular formation and also to the region of the locus coeruleus and the lateral medullary reticular formation at the level of the inferior olives. The predominant source of projections to the hypothalamus and brainstem structures is the central amygdaloid nucleus, which also sends projections to the nucleus of the tractus solitarius, the dorsal motor nucleus of the vagus nerve, and the superior cervical segments of the spinal cord. Uncrossed fiber systems descending from the basal ganglia terminate at the level of the pons, whereas uncrossed and crossed fiber systems descending from the dorsal and ventromedial hypothalamus can be traced into the spinal cord. The possible role of nuclei of the amygdaloid group, the hypothalamus, and their efferent projections in the regulation of somatic and vegetative functions and also of complex behavioral reactions is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 14–23, January–February, 1981.  相似文献   

6.
The distribution of neurokinin B (NKB) was determined by immunocytochemistry with antisera directed toward its amino terminus. Immunoreactive perikarya were detected in the main and accessory olfactory bulbs, cortical regions, the olfactory tubercle, the bed nucleus of the stria terminalis, the diagonal band of Broca, the nucleus accumbens, the septum, the neostriatum, several hypothalamic nuclei, the superior colliculus, the central gray, the substantia nigra, the medullary reticular formation, and the external cuneate nucleus. The distribution of NKB-containing perikarya revealed by immunocytochemistry was similar to the distribution of protachykinin B-containing cells previously visualized by in situ hybridization. Immunoreactive nerve fibers and terminals were detected in all major subdivisions of the brain. The levels of NKB measured by radioimmunoassay were highest in the hypothalamus. The distribution of NKB in the rat brain was similar to the distribution of substance P; however, there were several regions where the two distributions were clearly different.  相似文献   

7.
L J Sim  S A Joseph 《Peptides》1989,10(5):1019-1025
Afferent projections to the nucleus raphe magnus (NRM) and dorsal raphe nucleus (DRN) were identified using retrograde transport of horseradish peroxidase conjugated wheat germ agglutinin (HRP-WGA). Neurons were labeled in important nociceptive regions including periaqueductal gray (PAG), arcuate nucleus, lateral hypothalamus and medial thalamic nuclei following both injections. We have immunocytochemically identified opiocortin/WGA neurons in the arcuate nucleus following NRM and DRN injections. Dual stained catecholamine/WGA perikarya were found in zona incerta, locus coeruleus, substantia nigra, nucleus tractus solitarius and adjacent A2, C2 and C3, lateral paragigantocellular reticular nucleus/C1 and lateral reticular nucleus/A1 following DRN injections and in zona incerta, substantia nigra, nucleus tractus solitarius/A2 and lateral reticular nucleus/A1 after NRM injections. These results provide further evidence for opiocortin and catecholamine modulation of analgesia.  相似文献   

8.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: 1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accumbens septi; 2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and 3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruleus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammillary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

9.
Summary The corticotropin-releasing factor (CRF)-containing neurons were investigated in the brain of the domestic fowl by means of the peroxidase-antiperoxidase technique at the light-microscopic level. The detection of CRF-immunoreactivity was facilitated by silver intensification. CRF-containing perikarya were found in the paraventricular, preoptic and mammillary nuclei of the hypothalamus and in some extrahypothalamic areas (nuclei dorsomedialis and dorsolateralis thalami, nucleus accumbens septi, lobus parolfactorius, periaqueductal gray of the mesencephalon, nucleus oculomotorius ventralis). Immunoreactive nerve fibers and terminals were demonstrated in the external zone of the median eminence and the organum vasculosum of the lamina terminalis. These results indicate that an immunologically demonstrable CRF-neurosecretory system also exists in the avian central nervous system.  相似文献   

10.
Summary The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide.Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.  相似文献   

11.
Using autoradiographic method and 125I-Tyro rat CGRP as a ligand, receptor binding sites were demonstrated in the rat central nervous system. Saturation studies and Scatchard analysis of CGRP-binding to slide mounted tissue sections containing primarily cerebellum showed a single class of receptors with a dissociation constant of 0.96 nM and a Bmax of 76.4 fmol/mg protein. 125I-Tyro rat CGRP binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the telencephalon (medial prefrontal, insular and outer layers of the temporal cortex, nucleus accumbens, fundus striatum, central and inferior lateral amygdaloid nuclei, most caudal caudate putamen, organum vasculosum laminae terminalis, subfornical organ), the diencephalon (anterior hypothalamic, suprachiasmatic, arcuate, paraventricular, dorsomedial, periventricular, reuniens, rhomboid, lateral thalamic pretectalis and habenula nuclei, zona incerta), in the mesencephalon (superficial layers of the superior colliculus, central nucleus of the geniculate body, inferior colliculus, nucleus of the fifth nerve, locus coeruleus, nucleus of the mesencephalic tract, the dorsal tegmental nucleus, superior olive), in the molecular layer of the cerebellum, in the medulla oblongata (inferior olive, nucleus tractus solitarii, nucleus commissuralis, nuclei of the tenth and twelfth nerves, the prepositus hypoglossal and the gracilis nuclei, dorsomedial part of the spinal trigeminal tract), in the dorsal gray matter of the spinal cord (laminae I-VI) and the confines of the central canal. Moderate receptor densities were found in the septal area, the "head" of the anterior caudate nucleus, medial amygdaloid and bed nucleus of the stria terminalis, the pyramidal layers of the hippocampus and dentate gyri, medial preoptic area, ventromedial nucleus, lateral hypothalamic and ventrolateral thalamic area, central gray, reticular part of the substantia nigra, parvocellular reticular nucleus. Purkinje cell layer of the cerebellum, nucleus of the spinal trigeminal tract and gracile fasciculus of the spinal cord. The discrete distribution of CGRP-like binding sites in a variety of sensory systems of the brain and spinal cord as well as in thalamic and hypothalamic areas suggests a widespread involvement of CGRP in a variety of brain functions.  相似文献   

12.
Summary The distribution of VIP- and TRH-immunoreactivity in neurons and processes within the hypothalamus of the pigeon was investigated with light-microscopic immunocytochemical techniques. Most of the VIP-containing neurons are concentrated in the middle and caudal parts of the hypothalamus, with the greatest concentration of perikarya occurring in the medial and lateral part of the ventromedial hypothalamic nucleus and the infundibular nucleus. These cells give rise to axons that seem to extend into the median eminence. An extensive network of VIP-immunoreactive fibers and varicosities occupy the external layer of the median eminence. The majority of TRH-containing neurons is found in the anterior hypothalamus with the greatest concentration of cells in the magnocellular preoptic, medial preoptic, suprachiasmatic and paraventricular nuclei. TRH-immunoreactive fibers and varicosities form a dense arborization in the external layer of the median eminence. Lactation seems to induce substantial changes in VIP as well as in TRH-immunostaining in the median eminence and other hypothalamic regions as compared to control, sexually active animals. Furthermore, TRH-immunoreactivity decreased in the median eminence following 60-min exposure to cold. These results suggest that VIP- and TRH-containing pathways in the pigeon hypothalamus are involved in the mediation of neuroendocrine responses.  相似文献   

13.
Location within the brain of retrogradely labeled neurons putting out projections from the dorsal magnocellularis area of the red nucleus was investigated by means of microiontophoretic injection of horseradish peroxidase into the dorsal magnocellularis area of the cat red nucleus. Projections were found from a number of hypothalamic nuclei, the centrum medianum, parafascicular and subthalamic nuclei, zone incerta, Forel's field, nucleus medialis habenulae, pontine and bulbar reticular formation, and the following midbrain structures: the central gray matter, superior colliculus, Cajal's interstitial nucleus, reticular formation, and the contralateral red nucleus. Projections were also identified proceeding from more caudally located structures: the cerebellar fastigial nucleus, facial nucleus, medial vestibular and dorsal lateral vestibular nuclei, and ventral horns of the spinal cord cervical segments. Connections between the substantia nigra and the red nucleus were clarified. Projections to the red nucleus from the cerebral cortex, interstitial and dentate (lateral) cerebellar nuclei, the nucleus gracilis and cuneate nucleus were found, confirming data presented in the literature. Bilateral trajectories of retrogradely labeled fiber systems are described.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 810–816, November–December, 1987.  相似文献   

14.
The endogenous opioid peptides, the opiate receptors and several related behaviours, like opioid-mediated analgesia, show daily variations in different animal species including rats. The attempt to correlate the daily rhythm of opiate receptors in the central nervous system (CNS) to opiate related rhythmic phenomena requires an experimental approach with a high anatomical resolution, as the opioid distribution is very heterogeneous. In this paper we present the study of daily variations of 3H-naloxone binding sites in the different regions of the adult male rat brain, performed by means of quantitative autoradiography. Five rats are sacrificed at each investigated time of the day (0200, 0600,1000,1400,1800 and 2200). The ligand is 3H-naloxone(4nM), the quantification is performed by means of densitometric procedures (image analyzer Tesak VDC 501, computer Digital PDP11,3H-microscale). The statistical analysis is performed according to the single Cosinor method and the one-way analysis of variance followed by the multiple range test of Duncan. We analysed 33 different regions of the rat CNS, and the daily variations of opiate receptors are regionally selective. A circadian rhythm is found in the anterior cingulate cortex, hippocampal cortex, periventricular, medial, ventral, reticular and posterior nuclei of the thalamus, rhomboid, gelatinosus and rheuniens nuclei, lateral hypothalamus, locus coeruleus, grey substance of the pons, reticular formation of medulla oblongata, inferior olivary complex, medial part of the nucleus of the solitary tract and nucleus of the spinal tract of the trigeminal nerve. An ultradian rhythm is found in the medial and lateral preoptic areas, in the medial hypothalamus, in the medial and in the lateral nuclei of habenula. No significant variations during 24 hr according to the Cosinor analysis are found in the dorsal and lateral cerebral cortex, striatum, globus pallidus, bed nucleus of the stria terminalis, septal nuclei, lateral nucleus of the thalamus, cochlear nuclei, nucleus of the solitary tract, lateral and caudal parts, dorsal motor nucleus of the vagal nerve, XII and IX nerve nuclei. The amplitude of the daily variations observed ranges from 10 to 40%. Our results demonstrate the high anatomical selectivity of the daily modifications of 3H-naloxone binding sites in the rat CNS. They also indicate that quantitative autoradiography is a suitable and sensitive technique for these studies.  相似文献   

15.
Correlation between morphology and function in the hippocampus and hypothalamus was studied by electrophysiological and morphological techniques. Single unit responses were recorded extracellularly in the arcuate and medial preoptic nuclei of the hypothalamus to application of single stimuli to the hippocampus. Phasic responses and primary inhibition predominated in the arcuate nucleus, whereas both phasic and tonic responses were observed in the medial preoptic nucleus. In the morphological experiments horseradish peroxidase was injected into the same region of the hippocampus. Stained cells were found in the nuclei of the mammillary body, mediobasal hypothalamus, and medial preoptic nucleus. Groups of stained neurons were discovered at the periphery of the ventro- and dorsomedial and also in the lateral and mammillary nuclei of the hypothalamus. Besides fusiform and triangular neurons, reticular neurons also were found in all structures except the medial mammillary nucleus. The results are discussed from the standpoint of interaction between hypothalamus and hippocampus.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 427–434, September–October, 1979.  相似文献   

16.
The immunocytochemical localization of neurons containing the 41 amino acid peptide corticotropin-releasing factor (CRF) in the rat brain is described. The detection of CRF-like immunoreactivity in neurons was facilitated by colchicine pretreatment of the rats and by silver intensification of the diaminobenzidine end-product. The presence of immunoreactive CRF in perikarya, neuronal processes, and terminals in all major subdivisions of the rat brain is demonstrated. Aggregates of CRF-immunoreactive perikarya are found in the paraventricular, supraoptic, medial and periventricular preoptic, and premammillary nuclei of the hypothalamus, the bed nuclei of the stria terminalis and of the anterior commissure, the medial septal nucleus, the nucleus accumbens, the central amygdaloid nucleus, the olfactory bulb, the locus ceruleus, the parabrachial nucleus, the superior and inferior colliculus, and the medial vestibular nucleus. A few scattered perikarya with CRF-like immunoreactivity are present along the paraventriculo-infundibular pathway, in the anterior hypothalamus, the cerebral cortex, the hippocampus, and the periaqueductal gray of the mesencephalon and pons. Processes with CRF-like immunoreactivity are present in all of the above areas as well as in the cerebellum. The densest accumulation of CRF-immunoreactive terminals is seen in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The widespread but selective distribution of neurons containing CRF-like immunoreactivity supports the neuroendocrine role of this peptide and suggests that CRF, similarly to other neuropeptides, may also function as a neuromodulator throughout the brain.  相似文献   

17.
The distribution of dynorphin in the central nervous system was investigated in rats pretreated with relatively high doses (300–400 μg) of colchicine administered intracerebroventricularly. To circumvent the problems of antibody cross-reactivity, antisera were generated against different portions as well as the full dynorphin molecule (i.e., residues 1–13, 7–17, or 1–17). For comparison, antisera to [Leu]enkephalin (residues 1–5) were also utilized. Dynorphin was found to be widely distributed throughout the neuraxis. Immunoreactive neuronal perikarya exist in hypothalamic magnocellular nuclei, periaqueductal gray, scattered reticular formation sites, and other brain stem nuclei, as well as in spinal cord. Additionally, dynorphin-positive fibers or terminals occur in the cerebral cortex, olfactory bulb, nucleus accumbens, caudate-putamen, globus pallidus, hypothalamus, substantia nigra, periaqueductal gray, many brain stem sties, and the spinal cord. In many areas studied, dynorphin and enkephalin appeared to form parallel but probably separate anatomical systems. The results suggest that dynorphin occurs in neuronal systems that are immunocytochemically distinct from those containing other opioid peptides.  相似文献   

18.
The neuropeptide FF (NPFF) is an octapeptide of the RFamide-related peptides (FaRPs) that was primarily isolated from the bovine brain. Its distribution in the CNS has been reported in several mammalian species, as well as in some amphibians. Therefore, in order to gain insight in the evolution on the expression pattern of this neuropeptide in vertebrates, we carried out an immunohistochemical study in the sea lamprey, Petromyzon marinus. The distribution of NPFF-like-immunoreactive (NPFF-ir) structures in the lamprey brain is, in general, comparable to that previously described in other vertebrate species. In lamprey, most of the NPFF-ir cells were found in the hypothalamus, particularly in two large populations, the bed nucleus of the tract of the postoptic commissure and the tuberomammillary area. Numerous NPFF-ir cells were also observed in the rostral rhombencephalon, including a population in the dorsal isthmic gray and the reticular formation. Additional labeled neurons were found inside the preoptic region, the parapineal vesicle, the periventricular mesencephalic tegmentum, the descending trigeminal tract, the nucleus of the solitary tract, as well as in the gray matter of the spinal cord. The NPFF-ir fibers were widely distributed in the brain and the spinal cord, being, in general, more concentrated throughout the basal plate. The presence of NPFF-ir fibers in the lamprey neurohypophysis suggests that the involvement of NPFF-like substances in the hypothalamo-hypophyseal system had emerged early during evolution.  相似文献   

19.
Summary The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine -hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.  相似文献   

20.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号