首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Despite having winged queens, female dispersal in the monogynous ant Cataglyphis cursor is likely to be restricted because colonies reproduce by fission. We investigated the pattern of population genetic structure of this species using eight microsatellite markers and a mitochondrial DNA (mtDNA) sequence, in order to examine the extent of female and nuclear gene flow in two types of habitat. Sampling was carried out at a large spatial scale (16 sites from 2.5 to 120 km apart) as well as at a fine spatial scale (two 4.5-km transects, one in each habitat type). The strong spatial clustering of mtDNA observed at the fine spatial scale strongly supported a restricted effective female dispersal. In agreement, patterns of the mtDNA haplotypes observed at large and fine spatial scales suggested that new sites are colonized by nearby sites. Isolation by distance and significant nuclear genetic structure have been detected at all the spatial scales investigated. The level of local genetic differentiation for mitochondrial marker was 15 times higher than for the nuclear markers, suggesting differences in dispersal pattern between the two sexes. However, male gene flow was not sufficient to prevent significant nuclear genetic differentiation even at short distances (500 m). Isolation-by-distance patterns differed between the two habitat types, with a linear decrease of genetic similarities with distance observed only in the more continuous of the two habitats. Finally, despite these low dispersal capacities and the potential use of parthenogenesis to produce new queens, no signs of reduction of nuclear genetic diversity was detected in C. cursor populations.  相似文献   

2.
    
We report here the characteristics of 10 microsatellite markers isolated from a microsatellite‐enriched DNA library from Antirhea borbonica, Gmel (Rubiaceae). Antirhea borbonica is an endemic tree on the islands of La Réunion and Mauritius (Indian Ocean) where it occurs on young lava flows (fragmented and perturbed habitat) and in old primary forest. Ten polymorphic loci were characterized, with two to 15 alleles per locus, based on samples from six populations. These loci will be useful for analysing population structure in a metapopulation context where populations frequently go extinct.  相似文献   

3.
Nuclear DNA and mtDNA polymorphisms were surveyed in various species of East African Oreochromis . In Lake Baringo, where only Oreochromis niloticus baringoensis is present, alien mtDNA haplotypes were observed, apparently the result of introgressive hybridization with Oreochromis leucostictus . This introgression is not accompanied by any substantial or recorded transfer of nuclear genes into O. n. baringoensis .  相似文献   

4.
    
As a result of recurrent droughts and anthropogenic factors, the range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has contracted by 92% and the population has been reduced by approximately 97% in the past century, resulting in the smallest population size and most restricted geographical distribution of any North American grouse. We examined genetic variation through DNA sequence analysis of 478 base pairs of the mitochondrial genome and by assaying allelic variation at five microsatellite loci from lesser prairie-chickens collected on 20 leks in western Oklahoma and east-central New Mexico. Traditional population genetic analyses indicate that lesser prairie-chickens maintain high levels of genetic variation at both nuclear and mitochondrial loci. Although some genetic structuring among lesser prairie-chicken leks was detected within Oklahoma and New Mexico for both nuclear and mitochondrial loci, high levels of differentiation were detected between Oklahoma and New Mexico populations. Nested-clade analysis of mitochondrial haplotypes revealed that both historic and contemporary processes have influenced patterns of haplotype distributions and that historic processes have most likely led to the level of differentiation found between the Oklahoma and New Mexico populations.  相似文献   

5.
    
Cattleya coccinea and C. brevipedunculata (Orchidaceae) are closely related species distinguished primarily by geographical distribution, vegetative morphology and flowering period. Both species inhabit high‐elevation regions in south‐eastern Brazil, but are traditionally associated with different habitats, located in cloudy forests and campos rupestres (rocky fields), respectively. We used morphometrics and genetic variation of microsatellite markers to test the occurrence of a hybrid zone between these species located in Parque Estadual do Ibitipoca (PEI), Brazil. Morphological data reveal a continuum of variation between the putative taxa, influenced mainly by characters of leaf, pseudobulb and peduncle. However, genetic data do not support the occurrence of hybridization and introgression in PEI, showing that it is a pure population of C. brevipedunculata. Differences in vegetative characters among individuals from cloudy forests and campos rupestres suggest that morphological variation may be related to phenotypic plasticity in response to environmental light fluctuations, an unknown situation for this species. These results highlight the inconsistency of morphology for the identification of hybrids and the role of vegetative characters as a possible complicating factor for the taxonomy of these species, as they are subject to environmental influence.  相似文献   

6.
7.
    
Two populations of softmouth trout ( Salmo obtusirostris ) from the rivers Neretva (Bosnia and Herzegovina) and Jadro (Croatia), along with two neighbouring populations of brown trout ( Salmo trutta ) were analysed with a suite of genetic markers (two mtDNA genes, two nuclear genes, and nine microsatellites) as well as morphological characters. The Jadro softmouth trout were fixed for a brown trout mtDNA haplotype of the Adriatic lineage, which is 1.7% divergent from a previously described haplotype characteristic for the Neretva softmouth trout. All other genetic markers, as well as morphological analysis, supported the clear distinction of softmouth trout from the rivers Neretva and Jadro from brown trout in neighbouring populations, and thus a mtDNA capture event is assumed. Population specific microsatellite allele profiles, as well as a high number of private alleles for both populations of softmouth trout, support the hybridization between brown trout and the Jadro softmouth trout most likely being of ancient origin, thus leading to a reticulate evolutionary pattern of mtDNA in this taxon.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 139–152.  相似文献   

8.
Mitochondrial DNA control region sequences and seven microsatellites were used to estimate the genetic structuring, evolutionary history and historic migration patterns of the kob antelope (Kobus kob). Ten populations were analysed, representing the three recognized K. kob subspecies: K. k. kob in west Africa, K. k. thomasi in Uganda and K. k. leucotis in Sudan and Ethiopia. Despite being classified as K. k. thomasi and being phenotypically identical to the kob in Queen Elizabeth National Park (NP), the Murchison Falls population in Uganda showed high genetic similarity with the phenotypically distinct K. k. leucotis populations in Sudan and Ethiopia. This was regardless of marker type. Pairwise comparisons and genetic distances between populations grouped Murchison with K. k. leucotis, as did the Bayesian analysis, which failed to find any genetic structuring within the group. We propose that the divergent phenotype and life-history adaptations of K. k. leucotis reflect the isolation of kob populations in refugia in west and east Africa during the Pleistocene. Subsequent dispersal has led to secondary contact and hybridization in northern Uganda between lineages, which was supported by high levels of genetic diversity in Murchison. The reduced variability observed in Queen Elizabeth NP reflects a small founder population from west Africa and in part the decimation of Uganda's wildlife during the country's political turmoil in the 1970s. Due to similarities in phenotype and ecology, and the joint evolutionary history of their mtDNA sequences, the taxonomic status of K. k. kob and K. k. thomasi as separate subspecies is called into question.  相似文献   

9.
    
Understanding patterns of genetic structure is fundamental for developing successful management programmes for deme‐structured organisms, such as amphibians. We used five microsatellite loci and DNA sequences of the mitochondrial control region to assess the relative influences of landscape (geographic distance, altitude and rivers as corridors for dispersal) and historical factors on patterns of gene flow in populations of the toad Bufo bufo in Central Spain. We sampled 175 individuals from eight populations distributed along two major river drainages and used maximum‐likelihood and Bayesian approaches to infer patterns of gene flow and population structure. The mitochondrial DNA data show closely‐related haplotypes distributed across the Iberian Peninsula with no geographic structuring, suggesting recent differentiation of haplotypes and extensive gene flow between populations. On the other hand, microsatellites provide finer resolution, showing that high altitude populations (> 2000 m) exchange lower numbers of migrants with other populations. The results of Bayesian estimates for recent migration rates in high altitude populations suggest source‐sink dynamics between ponds that are consistent with independent data from monitoring over the past 20 years. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 824–839.  相似文献   

10.
    
The Australian bass is a catadromous species found in drainages of southeastern Australia. As an economically important resource that is declining in number, the Australian bass is currently extensively stocked in New South Wales and Victoria to meet the requirements of fisheries programs. We have developed six microsatellite markers that amplify in both Australian bass and the congeneric estuary perch. These markers are useful for investigating population genetic structure and for identifying hybrids between these two species.  相似文献   

11.
Pleistocene fragmentation of the Great BahamaBank resulted in one large and several smallpopulations of rock iguanas (Cycluracychlura). We explore patterns of geneticvariation within and among these islandpopulations using mitochondrial sequence data(partial ND4 to tRNALeu) in combinationwith eight polymorphic microsatellite loci (2to 10 alleles). Genetic data support twophylogeographically distinct groups, AndrosIsland and the Exuma cays. This resultconflicts with current subspecific taxonomy inwhich three subspecies are described. Analysesof allelic data indicate that most islandpopulations are currently demographicallyindependent. Pairwise Fst values between eightisland populations range from 0.18 to 0.63, and6 of 135 individuals are misassigned in anassignment test. Population-genetic diversityis characterized using standard measures suchas number of alleles and heterozygosity (H) inaddition to a normalized Shannon-Weaver indexof diversity (D). We find genetic diversity inthe Andros Island population comparable to thatin other non-piscine animals (avg. # ofalleles = 5, avg. H = 0.56, avg. D = 0.66) while inthe Exuma cays populations these measures aremuch lower (avg. # of alleles = 2.75–1.625, avg.H = 0.43–0.17, avg. D = 0.45–0.18). These dataare used to discuss conservation managementstrategies, including prioritization andtranslocation.  相似文献   

12.
Two subspecies of waterbuck (Kobus ellipsiprymnus), common (Kobus ellipsiprymnus ellipsiprymnus) and defassa (Kobus ellipsiprymnus defassa), are recognized based on differences in rump pattern, coat colour and geographical distribution. These forms are parapatrically distributed with an area of range overlap in East Africa, where phenotypically intermediate populations occur. Variation in 478 bp of the mitochondrial DNA control region and 14 polymorphic microsatellite loci were used to describe the genetic structure and phylogeographical pattern of the species, and to assess if the intermediate populations are the results of hybridization. In total, 186 individuals from 11 localities were analysed. A high degree of genetic differentiation was found between subspecies, although this was most evident from the microsatellite data. Hybridization was suggested in the phenotypically and geographically intermediate Nairobi NP population in Kenya. A neighbour-joining (NJ) tree based on microsatellite population genetic distances grouped Nairobi between the common and defassa populations, and a Bayesian analysis clearly showed introgression. Individuals sampled in Samburu NP, Kenya, had a common waterbuck phenotype, but introgression was suggested by both markers. Although a high degree of maternal defassa input was indicated from the sequence data, the Samburu population grouped with the common waterbuck in the microsatellite population genetic distance tree, with high support. Analyses of linkage disequilibrium and maximum-likelihood estimates of genetic drift suggested that admixture between subspecies is a recent event. The fact that introgression is limited between subspecies could be caused by chromosomal differences, hindering gene flow between common and defassa waterbuck.  相似文献   

13.
    
Geist J  Kuehn R 《Molecular ecology》2005,14(2):425-439
Despite the fact that mollusc species play an important role in many aquatic ecosystems, little is known about their biodiversity and conservation genetics. Freshwater pearl mussel (Margaritifera margaritifera L.) populations are seriously declining all over Europe and a variety of conservation programs are being established to support the remaining endangered central European populations. In order to provide guidelines for conservation strategies and management programs, we investigated the genetic structure of 24 freshwater pearl mussel populations originating from five major central European drainages including Elbe, Danube, Rhine, Maas and Weser, representing the last and most important populations in this area. We present a nondestructive sampling method of haemolymph for DNA analyses, which is applicable for endangered bivalves. The analyses of nine microsatellite loci with different levels of polymorphism revealed a high degree of fragmented population structure and very different levels of genetic diversity within populations. These patterns can be explained by historical and demographic effects and have been enforced by anthropogenic activities. Even within drainages, distinct conservation units were detected, as revealed from high F(ST) values, private alleles and genetic distance measures. Populations sampled close to contact zones between main drainage systems showed lowest levels of correct assignment to present-day drainage systems. Populations with high priority for conservation should not only be selected by means of census population size and geographical distance to other populations. Instead, detailed genetic analyses are mandatory for revealing differentiation and diversity parameters, which should be combined with ecological criteria for sustainable conservation and recovery programs.  相似文献   

14.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   

15.
    
To understand factors shaping species boundaries in closely related taxa, a powerful approach is to compare levels of genetic admixture at multiple points of contact and determine how this relates to intrinsic and extrinsic factors, such as genetic, morphological and ecological differentiation. In the Australian Alps, the threatened alpine bog skink Pseudemoia cryodroma co‐occurs with two morphologically and ecologically similar congeners, P. entrecasteauxii and P. pagenstecheri, and all three species are suspected to hybridize. We predicted that the frequency of hybridization should be negatively correlated with genetic divergence, morphological differentiation and microhabitat separation. We tested this hypothesis using a mitochondrial locus, 13 microsatellite loci, morphological and microhabitat data and compared results across three geographically isolated sites. Despite strong genetic structure between species, we detected hybridization between all species pairs, including evidence of backcrossed individuals at the two sites where all three species are syntopic. Hybridization frequencies were not consistently associated with genetic, morphological or ecological differentiation. Furthermore, P. entrecasteauxii and P. pagenstecheri only hybridized at the two sites where they are syntopic with P. cryodroma, but not at the largest site where P. cryodroma was not recorded, suggesting that P. cryodroma may serve as a bridging species. This study reveals the complex dynamics within a three species hybrid zone and provides a baseline for assessing the impact of climate change and anthropogenic habitat modification on future hybridization frequencies.  相似文献   

16.
Comparative analysis of protein loci, microsatellite and mtDNA markers revealed generally comparable estimates for introgression and apparent admixture rates in stocked brown trout populations at two sites in the River Doubs (Rhône dainage, Switzerland), which are 10 km apart and which belong to the same management unit. At one site, a significant deviation between mtDNA and nuclear markers could be explained by stocking of F1 hybrids originating from crosses between hatchery females and males from the local population. Substantial differences between diagnostic protein loci and protein loci having non-fixed private alleles indicated that caution must be exercised when using genetic markers not strictly diagnostic for the distinction of the populations under investigation. Congruent estimates of introgression and apparent admixture rates between diagnostic protein loci and presumed diagnostic microsatellite loci suggest that the latter can be regarded as reliable genetic markers for the estimation of introgression in Mediterranean brown trout populations stocked with trout of Atlantic origin. Significant differences in introgression and apparent admixture rates between the two sites and between age-classes of one study site were observed. Introgression is suggested to depend on environmental factors. Significantly lower introgression rates in age-class 2+ years as compared to juvenile trout might further indicate that introduced Atlantic brown trout and hybrids decrease in proportion between age-classes 1+ and 2+ years.  相似文献   

17.
Human-mediated global change will probably increase the rates of natural hybridization and genetic introgression between closely related species, and this will have major implications for conservation of the taxa involved. In this study, we analyse both mitochondrial and nuclear data to characterize ongoing hybridization and genetic introgression between two sympatric sister species of mustelids, the endangered European mink (Mustela lutreola) and the more abundant polecat (M. putorius). A total of 317 European mink, 114 polecats and 15 putative hybrid individuals were collected from different localities in Europe and genotyped with 13 microsatellite nuclear markers. Recently developed Bayesian methods for assigning individuals to populations and identifying admixture proportions were applied to the genetic data. To identify the direction of hybridization, we additionally sequenced mtDNA and Y chromosomes from 78 individuals and 29 males respectively. We found that both hybridization and genetic introgression occurred at low levels (3% and 0.9% respectively) and indicated that hybridization is asymmetric, as only pure polecat males mate with pure European mink females. Furthermore, backcrossing and genetic introgression was detected only from female first-generation (F1) hybrids of European mink to polecats. This latter result implies that Haldane's rule may apply. Our results suggest that hybridization and genetic introgression between the two species should be considered a rather uncommon event. However, the current low densities of European mink might be changing this trend.  相似文献   

18.
    
We used molecular approaches to study the status of speciation in coral reef fishes known as hamlets (Serranidae: Hypoplectrus). Several hamlet morphospecies coexist on Caribbean reefs, and mate assortatively with respect to their strikingly distinct colour patterns. We provide evidence that, genetically, the hamlets display characteristics common in species flocks on land and in freshwaters. Substitutions within two mitochondrial DNA (mtDNA) protein-coding genes place hamlets within a monophyletic group relative to members of two related genera (Serranus and Diplectrum), and establish that the hamlet radiation must have been very recent. mtDNA distances separating hamlet morphospecies were slight (0.6 +/- 0.04%), yielding a coalescent estimate for the age of the hamlet flock of approximately 430 000 years. Morphospecies did not sort into distinct mtDNA haplotype phylogroups, and alleles at five hypervariable microsatellite loci were shared broadly across species boundaries. None the less, molecular variation was not distributed at random. Analyses of mtDNA haplotype frequencies and nested clades in haplotype networks revealed significant genetic differences between geographical regions and among colour morphospecies. We also observed significant microsatellite differentiation between geographical regions and in Puerto Rico, among colour morphospecies; the latter providing evidence for reproductive isolation between colour morphospecies at this locale. In our Panama collection, however, colour morphospecies were mostly genetically indistinguishable. This mosaic pattern of DNA differentiation implies a complex interaction between population history, mating behaviour and geography and suggests that porous boundaries separate species in this flock of brilliantly coloured coral reef fishes.  相似文献   

19.
    
Reproductive isolation barriers maintain the integrity of species by preventing interspecific gene flow. They involve temporal, habitat or behavioral isolation acting before fertilization, and postzygotic isolation manifested as hybrid mortality or sterility. One of the approaches of how to study reproductive isolation barriers is through the analysis of hybrid zones. In this paper, we describe the structure of a hybrid zone between two crested newt species (Triturus cristatus and T. carnifex) in the southern part of the Czech Republic using morphological, microsatellite, and mitochondrial (mtDNA) markers. Specifically, we tested the hypothesis that the structure of the hybrid zone is maintained by species‐specific habitat preferences. Comparing the genetic structure of populations with geographical and ecological parameters, we found that the hybrid zone was structured primarily geographically, with T. cristatus‐like populations occurring in the northeast and T. carnifex‐like populations in the southwest. Despite T. cristatus tending to occur in deeper ponds and T. carnifex on localities with more shading, the effect of both ecological parameters on the structure of the zone was minimal. Next, we corroborated that T. carnifex individuals and some hybrids possess mtDNA of T. dobrogicus, whose nuclear background was not detected in the studied hybrid zone. Hybridization between T. carnifex and T. dobrogicus (resulting in unidirectional mtDNA introgression) had to predate subsequent formation of the hybrid zone between T. cristatus and T. carnifex. Populations of crested newts in the southern part of the Czech Republic thus represent a genetic mosaic of nuclear and mitochondrial genomes of three species.  相似文献   

20.
    
Human activity and climate change are widely considered to be primarily responsible for the extinction of Galliformes birds. Due to a decline in population, the Reeves's pheasant (Syrmaticus reevesii), a member of the Galliformes family, was recently elevated to first-class national protected status in China. However, determining the causal factors of their extinction and carrying out protection measures appear to be challenging owing to a lack of long-term data with high spatial and temporal resolutions. Here, based on a national field survey, we used habitat suitability models and integrated data on geographical environment, road development, land use, and climate change to predict the potential changes in the distribution and connectivity of the habitat of Reeves's pheasant from 1995 to 2050. Furthermore, ecological corridors were identified using the minimum cumulative resistance (MCR) model. The prioritized areas for habitat restoration were determined by integrating the importance indices of ecological sources and corridors. Our results indicated that both land use and climate change were linked to the increased habitat loss for the Reeves's pheasant. In more recent decades, road construction and land use changes have been linked to a rise in habitat loss, and future climate change has been predicted to cause the habitat to become even more fragmented and lose 89.58% of its total area. The ecological corridor for Reeves's pheasant will continue to decline by 88.55%. To counteract the negative effects of human activity and climate change on the survivorship of Reeves's pheasant, we recommend taking immediate actions, including bolstering cooperation among provincial governments, restoring habitats, and creating ecological corridors among important habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号