首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trehalose-6-P synthetase activity was low at the beginning of the life cycle of Dictyostelium discoideum, reached maximum activity at 20 h, and decreased at late sorocarp. Enzyme activity in developing spore cells increased 10-fold during differentiation from myxamoebae (0 h) to the culmination stage (20 h) and decreased slightly at sorocarp (24 h). Activity was similar in spore cells at the apex of the stalk. The activities in the stalk cells were dependent upon their position in the developing stalk. There was a decreasing gradient of activity from the apex to the base of the stalk.  相似文献   

2.
During the time course of differentiation in Dictyostelium discoideum, glycogen was found to accumulate from the amoebae stage to the culmination stage of development. Upon sorocarp formation (23 h), glycogen was rapidly degraded. Ultramicrotechniques, utilizing amplification of glycogen by enzymatic cycling, were used to follow glycogen metabolism in pre-stalk and prespore cells during the differentiation cycle. Both cell types accumulated glycogen at nearly the same rate. By the pseudoplasmodium stage of development glycogen had accumulated to 50% of its maximum value, and no differences were found between pre-stalk and pre-spore cells. Glycogen was degraded as pre-stalk cells migrated into the position for stalk construction. At the culmination stage of development stalk cells near the base were devoid of glycogen while pre-stalk cells near the apex of the stalk showed no loss of glycogen. The complete loss of glycogen from stalk cells occurred over a distance occupied by approximately 100 cells, and over a time period of approx. 1 h. Pre-spore cells at the culmination stage showed no loss of glycogen even though separated from stalk cells by only a thin cellulose sheath. The degradation of prespore cell glycogen did not commence until stalk construction was completed and the pre-spore mass had reached the apex of the stalk. Pre-spore cells at the culmination stage contained high levels of glycogen while only 2 h later, total degradation had occurred.  相似文献   

3.
The localization of glycogen phosphorylase was studied during the differentiation of prespore and prestalk cells in Dictyostelium discoideum. Ultramicrotechniques were utilized to assay the enzyme activity in cell samples as small as 0.02 μg dry wt in reaction volumes of 0.1 μl. The activity was assayed using an amplification procedure employing the enzymatic cycling of pyridine nucleotides. Glycogen phosphorylase from individual organisms was assayed during the developmental period. Early in development, activity was low but gradually increased to a maximum value at culmination. From culmination to sorocarp, enzyme activity decreased rapidly. Cell-specific assays of spores showed that phosphorylase activity increased slightly to culmination, and then decreased. Prestalk cells showed the greatest activity in the area of stalk sheath construction and elongation. Stalk cells showed a decreasing gradient of enzyme activity from the tip of the stalk to the base. Enzyme activity in the spores may be sufficient to provide glucose units for trehalose synthesis and spore coat production. The prestalk enzyme may degrade glycogen to provide glycosyl units for production of the stalk sheath and trehalose. Possible models of cell-specific biochemical events in Dictyostelium discoideum are discussed.  相似文献   

4.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

5.
Cyclic AMP phosphodiesterase (PDE) activity reaches a peak during the aggregation stage of development where it functions to regulate extracellular levels of cAMP. During the subsequent differentiation of the two cell types at the culmination stage, the activity reappears but only in stalk cells. We found that extracts from the culmination stage contained PDE which could be activated by preincubation with Mg2+ and dithiothreitol (DTT), a treatment which is known to release an endogenous inhibitor from the aggregation stage enzyme. When the culmination stage extracts were subjected to chromatography on Biogel P300, two peaks of activity were eluted, PDE-I (Mr greater than 260,000) and PDE-II (Mr 100,000). Treatment of the fractions with Mg-DTT did not affect the low-molecular-weight enzyme but caused activation of the high-molecular-weight enzyme and the appearance of a third, intermediate form. Kinetic analysis of the two peaks revealed Km values for cAMP of 2 mM and 10 microM for PDE-I and PDE-II, respectively. We tested the possibility that these forms of the enzyme might be distributed differently in the two cell types by measuring the Km for cAMP and the effect of Mg-DTT treatment on isolated sections of stalk and spore cells. The spore sections contained a high Km form of the enzyme (0.3 mM) which was activated by preincubation with Mg . DTT whereas stalk sections contained a low Km form (3 microM) which was not affected by the activation treatment. We conclude that both cell types contain enzyme protein and that the apparent localization of PDE activity in stalk cells is due to the inhibition of activity in spore cells.  相似文献   

6.
Cyclic 3',5'-adenosine monophosphate (cAMP) is secreted as the chemotactic signal by aggregating amoebae of the cellular slime mold Dictyostelium discoideum. We have used ultramicrotechniques in the biochemical analysis of cyclic nucleotide phosphodiesterase (PD) distribution in individual aggregates at various stages of development. With handmade constriction pipettes in microliter volumes, sections of lyophilized individuals weighing 20-100 ng could be assayed in a reaction coupled to 5'-nucleotidase. Phosphodiesterase activity was measured at pH 7.5 with 12 microM cAMP, cAMP-PD activity in aggregates ranged from 20-40 mmol/h/kg. In the pseudoplasmodium it had dropped to 5-10 mmol/h/kg and a difference in activity between the anterior prestalk cells and posterior prespore cells began to appear. The utmost posterior sections showed elevated phosphodiesterase from this stage onward. During culmination, activity rose to 40-60 mmol/h/kg associated with the developing stalk, while it declined in the spore mass. The papilla remained constant at 5-10 mmol/h/kg. The pattern of localization in the stalk was the same when cGMP was used as substrate. Extracellular phosphodiesterase inhibitor produced at the aggregation stage was found to reduce the localized activity in the culmination stage by 50-80%, with the most marked inhibition occurring in the center of the papilla. We found no evidence of endogenous heat-stable phosphodiesterase inhibitor within the culminating sorocarp.  相似文献   

7.
Ultra-microfluorometric techniques were adapted to follow several compounds related to energy metabolism through the developmental cycle of Dictyostelium discoideum. Each compound (ATP, trehalose, glucose, and ammonium ion) was found to be present in stalk and/or spore cells. The accumulation of NH4+ was interpreted as an indication of protein degradation, a source of energy in this organism. During the early stages of differentiation NH4+ was localized only in prestalk cells. However, it accumulated in spore cells during culmination such that levels were comparable in the two cell types by the end of development. Trehalose, an energy source for germinating spores, was found in both cell types but was preferentially degraded in stalk cells late in development. Glucose, the degradation product of trehalose, was localized in prestalk cells and varied inversely with trehalose levels. ATP was not localized in a specific cell type during development. However, ATP declined in stalk cells at an earlier stage of development.  相似文献   

8.
Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The K(m) values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development.  相似文献   

9.
Abstract. The effects of migration and culmination on patterning of presumptive (prespore and prestalk) cells and mature (spore and stalk) cells of D. discoideum were investigated. The ratio of prespore to total cells, as determined by staining with fluorescein-conjugated antispore globulin, was constant (77%) up until 8 h of slug migration, but then decreased to a level (64%) which thereafter remained unchanged during migration. Cells which lost prespore antigen during migration were located in the posterior (prespore) part next to the agar surface.
Upon induction of culmination, however, the ratio of prespore cells quickly increased to the normal level (77%) within 1–2 h. During the transition between migration and culmination prestalk and prespore cells were considerably intermixed within the cell mass, before the normal prestalk-prespore pattern was reestablished at the preculmination (Mexican hat) stage. Spore: stalk ratios within fruiting bodies were normal irrespective of the lengths of slug migration.  相似文献   

10.
11.
Abstract. Depending upon environmental conditions, developing cells of the cellular slime mold Dictyostelium discoideum may enter a slug stage in which the cell mass migrates in response to gradients of light and temperature. This developmental stage has often been used to study the divergent differentiation of the cells that will subsequently form spores and stalk in the mature fruiting body. However, still debated is the extent to which the differentiation evident in slug cells is a precondition for development of the mature cells in fruits. Using two-dimensional gel electrophoresis of polypeptides, we have examined the proteins made by prespore and prestalk cells of migrating slugs and by maturing spore and stalk cells. The data indicate that many of the cell-type specific polypeptides in prespore cells of slugs persist as cell-type specific polypeptides of mature spores. Prestalk slug cells, in contrast, do not contain significant amounts of stalk-specific proteins; these proteins appear only during culmination. The precursor cell types also differ in the times and rates of synthesis of cell-specific proteins: prestalk proteins appear much earlier in development than do the prespore, but never reach the levels of expression that the prespore proteins do later in culmination. These findings may explain the well established ability of prespore cells to regulate their cell type more rapidly than do prestalk cells. There are also implications for our general understanding of what is a 'prestalk' gene product.  相似文献   

12.
We have used two-dimensional gel electrophoresis to identify over 30 proteins which are specific to one or other of the two cell types of Dictyostelium discoideum, either at the slug stage or in mature fruiting bodies. Our results support the idea that there is a continuous developmental program that begins in prespore cells at the hemispherical mound stage (10-12 hr) and results in spore differentiation (24 hr). Prestalk differentiation, on the other hand, appeared largely unrelated to stalk differentiation, which was first detectable at the onset of culmination (18 hr). We have also used this approach to study the differentiation of stalk-only mutants and have found that the cells can switch from spore to stalk differentiation as late as 2 hr before the end of the wild-type developmental program.  相似文献   

13.
Cyclic-AMP phosphodiesterase (PDE) accumulates during the aggregation stage of Dictyostelium where it functions in maintaining extracellular levels of cyclic AMP (cAMP). The activity decreases during the subsequent multicellular slug stage and then accumulates again during sorocarp construction, but the enzyme is active only in the developing stalk. Because of the possible significance of this localized activity in only one of the two cell types, we have purified the enzyme from the multicellular stage in order to understand its mode of regulation in vivo. We find that the enzyme which is localized in the prestalk cells is similar in many respects to the extracellular PDE which is active at the aggregation stage. The enzyme from both stages is inhibited by a low molecular weight protein. The mechanism of this inhibition is through a shift in the apparent Km for cAMP from micromolar to millimolar levels. The inhibited form of the enzyme can be activated by preincubation with MgSO4 and dithiothreitol (DTT). This activation treatment releases the inhibitor from the enzyme, thus restoring the low Km form, changes the molecular weight of the culmination stage enzyme from 95 000-100 000 to 68 000 by releasing the Mr 35 000-40 000 inhibitor protein, and causes irreversible loss of inhibitor activity. Although the inhibitor could be obtained in high yield from the aggregation stage by simply heating the extracellular fluid, it could not be detected from culmination stage extracts when prepared by this method. However, inclusion of calcium in the extraction buffer resulted in release of inhibitor from both heated and nonheated samples. The results indicate that the stalk cell specific PDE is regulated similarly to the aggregation stage PDE and opens the possibility of differential regulation of PDE in the two cell types.  相似文献   

14.
A new stalk-specific wheat germ agglutinin (WGA) binding protein, wst34, has been identified in Dictyostelium discoideum and purified by the use of preparative sodium dodecyl sulfate - polyacrylamide gel electrophoresis and a WGA-affinity column. In normal development, wst34 appears during culmination and is maintained in stalk cells. It has a molecular mass of 34 kilodaltons and a pI value of 5.5-6.5. A polyclonal antiserum raised against stalk cell proteins of Dictyostelium mucoroides recognizes wst34 in western blots of D. discoideum proteins.  相似文献   

15.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

16.
The P4 variant of Dictyostelium discoideum is characterized by the production of fruiting structures in which the overall proportion of stalk to spore material is increased, relative to the wild type. The altered morphology of the mutant is due to increased sensitivity to cyclic AMP which promotes stalk cell differentiation. In the presence of 10-4 M-cyclic AMP the entire population of P4 amoebae forms clumps of stalk cells on the surface of the dialysis membrane support. Measurement of changes in activity of a range of developmentally-regulated enzymes during the development of P4 in the presence and absence of cyclic AMP has allowed us to identify three classes of enzyme: (i) Those, such as beta-glucosidase II, trehalose-6-phosphate synthetase and uridine diphosphogalactose-4-epimerase, which are required for the production of spores. (ii) Enzymes, primarily but perhaps not exclusively, required during stalk cell formation. Typical of these are N-acetylglucosaminidase and alkaline phosphatase. (iii) General enzymes, such as threonine dehydrase, alpha-mannosidase and uridine diphosphoglucose pyrophyosphorylase, which are present inboth pre-stalk and pre-spore cells and appear to be necessary for the development of both cell types.  相似文献   

17.
We have examined the effects of chymotrypsin or pronase on the differentiation of monolayers of Dictyostelium discoideum amoebae developing in the presence of 1–5 mM cyclic AMP. Using sporogenous mutants, which are capable of forming both spores and stalk cells under these conditions, we have observed that low concentrations of either protease selectively inhibit a late step of spore formation. Higher levels of the proteases act at an earlier time and by a distinct mechanism to reduce the accumulation of the prespore cell specific enzyme UDP galactose polysaccharide transferase while not affecting the appearance of glycogen phosphorylase. The latter is present in both prestalk and prespore cells.  相似文献   

18.
Pseudoplasmodia of Dictyostelium discoideum at the culmination stage were separated into two cell populations by sedimentation in a discontinuous renografin gradient. The two lighter fractions (I and II) had enzymatic activities characteristic of the anterior prestalk cells, while the heaviest fraction (III) showed enzyme activities characteristic of the posterior prespore cells. Cell-cell adhesion among prespore cells is much more resistant to EDTA dissociation than 10-h cells and prestalk cells. Fab fragments prepared from antibodies directed against a specific cell surface glycoprotein gp150 were more effective in dissociating prespore cells than prestalk cells. In addition, prespore cells contained an approximately 2-fold higher concentration of the endogenous carbohydrate binding protein discoidin-I than prestalk cells. These differences may account for the differential cohesiveness of these two cell populations and provide a basis for cell recognition and cell sorting at the slug stage.  相似文献   

19.
We used two different methods to study the expression pattern of alkaline phosphatase (alp) in Dictyostelium. In situ staining of the endogenous enzyme activity at different stages of development showed that the enzyme was active early in the aggregation stage and localized to the area where the tip of the first finger was initiated. The activity was localized to the anterior region of developing slugs, then became restricted to the region between the prestalk and prespore cells at the culmination stage. In the complete fruiting body, the activity was confined to the lower and upper cup. A second method to study alp expression utilized a beta-galactosidase reporter gene under the control of the alp promoter. A low level of beta-galactosidase activity was observed in vegetative cells, then increased during development. Reporter gene activity was restricted to PstO cells at the slug stage. At the culmination stage, the expression was restricted to prestalk cells at the interface between the prestalk and prespore cells. In the completed fruiting body, the expression was observed in the upper and lower cup.  相似文献   

20.
Dictyostelium discoideum growing or developing on cellulose dialysis membranes were fixed with acrolein vapour for electron microscopy. In interphase amoebae, nucleoli began to protrude from the nuclei. The percentage of cells with protruding nucleoli increased during aggregation by a value approximately twice as high in aggregation streams as in centers. Cells in pseudoplasmodia showed only a low percentage and protrusions disappeared at early culmination stage. The protrusions did not reappear when cells from dissociated pseudoplasmodia migrated toward cAMP. Thus the formation of the protrusions did not depend solely on chemotaxis; rather, it was specific to the aggregation stage. In aggregation streams, the nucleus was anterior in the cell, with the protrusion at its anterior periphery. In contrast, the nucleus associated body (NAB) was evident at the cell's mid-point. This orientation of nucleus and NAB in the aggregating slime mould amoeba is contrary to that seen in human neutrophils or cultured mouse 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号