首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Occasionally, boar semen must be shipped to another location for cryopreservation. We increased the initial holding time for the cooling of extended semen at 15 degrees C from 3 to 24 h to determine the effects on sperm characteristics and fertility. Thirty-one gilts and sows were inseminated once with subsequently cryopreserved and thawed semen. Increasing the holding time from 3 to 24 h had no significant effect on pregnancy rate 23 days after AI with frozen-thawed semen (64.5%) but decreased (P<0.05) embryo number from 15 to 9 and recovered embryos as fraction of CL from 73 to 47%. While the longer holding time at 15 degrees C did decrease potential litter size, the loss incurred was not too great to preclude the incorporation of a longer holding time into the cryopreservation protocol. An experiment was conducted to test the hypothesis that processing and freeze-thawing of boar semen would induce phospholipid scrambling in the plasma membrane similar to that evoked by incubation in bicarbonate-containing media. Merocyanine staining after incubation in the presence and absence of bicarbonate indicated that changes in plasma membrane phospholipid scrambling of processed and cryopreserved sperm differed from those in fresh semen undergoing bicarbonate-induced capacitation. The level of Annexin-V binding in boar spermatozoa increased from 1.6% in live spermatozoa in fresh semen to 18.7% in cryopreserved sperm. Apoptosis is unlikely to operate in mature spermatozoa. Apoptotic morphology in ejaculated spermatozoa is probably a result of incomplete deletion of apoptotic spermatocytes during spermatogenesis. Increased Annexin-V binding in thawed spermatozoa probably results from plasma membrane damage incurred during freezing and thawing.  相似文献   

2.
In this study, glutathione-S-transferase Mu3 (GST) has been reported to play an important role in sperm capacitation, acrosome reaction, and fertilization. The freshly ejaculated buffalo spermatozoa were in vitro capacitated using heparin (10 μg/mL) or cryopreserved in egg yolk citrate extender. Glutathione-S-transferase was identified and characterized in terms of their isozymic forms, tyrosine phosphorylation, and immunolocalization patterns in cryopreserved buffalo spermatozoa in comparison with freshly ejaculated and in vitro capacitated spermatozoa. Two-dimensional gel electrophoresis, immunoblot, immunocytochemistry, and enzyme activity analyses were done to characterize GST in this study. Five and eight isozymic forms of GST were detected in cryopreserved and capacitated spermatozoa, respectively. Differential tyrosine phosphorylation of these enzymes was observed in cryopreserved and capacitated spermatozoa. The tyrosine phosphorylation of this enzyme involved cAMP protein kinase-A dependent and extracellular signal-regulated kinase independent pathways during in vitro capacitation of the spermatozoa. Differential immunolocalization patterns of GST were observed in freshly ejaculated, capacitated, and cryopreserved spermatozoa. Glutathione-S-transferase Mu3 enzyme activity was found to be significantly (P < 0.05) different in freshly ejaculated, capacitated, and cryopreserved spermatozoa. Activity of GST was significantly (P < 0.05) increased with the progression of capacitation. The cryopreserved spermatozoa showed significantly (P < 0.05) greater enzyme activity compared with fresh spermatozoa and was equal to 2-hour capacitated spermatozoa. The cryopreserved spermatozoa showed significant (P < 0.05) loss of GST enzyme protein. Tyrosine phosphorylated GST showed significantly (P < 0.05) greater activity compared with their dephosphorylated forms. The information generated in this study can be used to understand the molecular mechanism of the effects of GST on capacitation. Regulation of GST during sperm cryopreservation could be a good target to improve fertility of cryopreserved spermatozoa for their use in assisted reproductive technologies.  相似文献   

3.
After ejaculation, mammalian spermatozoa must undergo capacitation to fertilize. Capacitation of bovine spermatozoa occurs in vitro in medium supplemented with heparin. Semen cryopreservation is an important tool for assisted reproduction, although the fertility of frozen-thawed spermatozoa is reduced, possibly due to precocious capacitation-like changes that are known to occur. Our purpose was to clarify the mechanisms involved in bull sperm cryocapacitation induced by cryopreservation. Our general hypothesis is that the signaling pathways that lead to capacitation are triggered by the cryopreservation procedure. Ejaculated bovine semen was divided into two aliquots and diluted in extender; one was then kept fresh, whereas the second was cryopreserved. Western blots of extracted sperm proteins with anti-phosphotyrosine antibody showed that capacitation, induced by either heparin in fresh sperm or cryopreservation (cryocapacitation), is associated with a differential profile of phosphotyrosine-containing proteins. Immunolocalization of phosphotyrosine-containing proteins in the fresh and cryopreserved spermatozoa showed that, after thawing, cryocapacitated sperm displayed labeling over the acrosomal region, whereas for fresh sperm, this labeling appeared after 5-h incubation with heparin. The chlortetracycline assay and the ability of the sperm to undergo the lysophosphatidylcholine-induced acrosome reaction were used to confirm that a subpopulation of cryopreserved sperm is capacitated at thawing, irrespective of heparin inclusion. Since glucose is known to inhibit heparin-induced capacitation, the semen extender was modified to include glucose as a means of inhibiting cryocapacitation; however, cryocapacitation was not prevented according to the chlortetracycline assay and profile of phosphotyrosine-containing sperm proteins.  相似文献   

4.
Capacitation is a biochemical pathway sperm must undergo to be able to fertilize an oocyte, whereas cryoinjury is cryopreservation-induced biophysical damage which renders sperm immediately capable of fertilization. Similarities between capacitation and cryoinjury have not been fully elucidated. The present study attempted to characterize both processes, including the role of seminal plasma (SP). Merocyanine-540 staining detected an increase (P < 0.01) in plasma membrane disorder from 60.5% in in vitro capacitated sperm to 91.4% in cryopreserved sperm, with no effect of SP. After cryopreservation, 42.8% of sperm displayed phosphatidylserine on the outer leaflet compared to 13.6% of in vitro capacitated sperm (P < 0.01), as assessed by annexin-V staining (SP decreased phosphatidylserine inversion in both populations). Lipid raft-associated glycolipid GM1 movement increased throughout the entire sperm membrane in cryopreserved sperm, although SP did not affect lipid raft movement in these sperm. Cryopreserved and in vitro capacitated sperm had a similar intensity of tyrosine phosphorylation (although SP reduced this intensity). In in vitro capacitated sperm, 67.5% underwent an ionophore induced acrosome reaction with 91.3% reacting in cryopreserved sperm. In both cases, SP reduced (P < 0.01) the percentage of acrosome-reacted sperm to 1.0 and 7.8%, respectively. Cryopreservation appeared to damage sperm, resulting in marked increases in membrane disorder, cholesterol efflux, and percent of capacitated sperm. In both capacitated and cryoinjured sperm, the addition of SP appeared to attenuate some of these events.  相似文献   

5.
Sperm capacitation is necessary for the fertilization of oocytes. During capacitation intracellular and membrane changes occur, that culminate with an exocytotic event called the acrosome reaction. The aim of this work was to study the participation of the superoxide anion (O2-.) and of hydrogen peroxide (H2O2) in the capacitation process and acrosome reaction in spermatozoa from cryopreserved bovine semen. Samples were capacitated with heparin or treated with the xanthine-xanthine oxidase-catalase system (X-XO-C) for the production of O2-. The percentage of capacitated spermatozoa was determined using the chlortetracycline (CTC) technique, by means of epifluorescence microscopy. Addition of X-XO-C to the incubation medium significantly induced capacitation (P < 0.05), but there were no differences with samples incubated with heparin. When the medium contained heparin or the X-XO-C, addition of superoxide dismutase (SOD, 0.5 mg/mL) significantly inhibited capacitation (P < 0.05). In samples treated with heparin and with diverse concentrations of H2O2 (10, 25, 50 and 250 microM) in the incubation medium, the percentage of capacitated spermatozoa was significantly reduced (P < 0.05); however, acrosome reaction was produced at concentrations of 10 and 25 microM H2O2. At concentrations greater than 25 microM H2O2 a deleterious effect was observed on sperm motility. From these results it may be inferred that O2-. is required in the capacitation process and that H2O2 may participate as an inductor of the acrosome reaction in spermatozoa from cryopreserved bovine semen.  相似文献   

6.
The capacitating agent bicarbonate/CO(2) has been shown to induce profound changes in the architecture and dynamics within the sperm's plasma membrane lipid bilayer via a cAMP-dependent protein phosphorylation signaling pathway. Here we have investigated the effect of bicarbonate on surface exposure of endogenous aminophospholipids in boar spermatozoa, detecting phosphatidylserine (PS) with fluorescein-conjugated annexin V and phosphatidylethanolamine (PE) with fluorescein-conjugated streptavidin/biotinylated Ro-09-0198. Flow cytometric analyses revealed that incubation with 15 mM bicarbonate induced 30%-70% of live acrosome-intact cells to expose PE very rapidly; this exposure was closely related to a decrease in lipid packing order as detected by enhanced binding of merocyanine 540. PS exposure was detectable in the same proportion of cells, though its expression was slower. Confocal microscopy revealed that exposure of aminophospholipids in intact cells was restricted to the anterior acrosomal region of the head plasma membrane. Aminophospholipid exposure, merocyanine stainability, and a subsequent migration of cholesterol to the apical region of the head plasma membrane, were all under the control of the cAMP-dependent protein phosphorylation pathway. The close coupling of decreased lipid packing order with exposure of PE led us to conclude that bicarbonate was inducing phospholipid scrambling (i.e., collapse of asymmetric transverse distribution), and that the scrambling was a prerequisite for cholesterol relocation. There was no evidence whatever that the bicarbonate-induced scrambling was an apoptotic process. It was not accompanied by major loss of viability or by DNA degeneration or by loss of mitochondrial function, and it could not be blocked by the broad-specificity caspase inhibitors zVAD-fmk and BocD-fmk. In the absence of bicarbonate, scrambling could not be induced by the apoptotic agents UV, staurosporine, or cycloheximide. Bicarbonate-induced phospholipid scrambling thus appears to be an important and early physiological event in the capacitation process.  相似文献   

7.
Phosphorylation of tyrosine residues on sperm proteins is one important intracellular mechanism regulating sperm function that may be a meaningful indicator of capacitation. There is substantial evidence that cryopreservation promotes the capacitation of sperm and this cryocapacitation is frequently cited as one factor associated with the reduced longevity of cryopreserved sperm in the female reproductive tract. This study was designed to determine whether stallion sperm express different levels of tyrosine phosphorylation after in vitro capacitation and whether thawed sperm display similar phosphorylation characteristics in comparison with freshly ejaculated sperm. Experiments were performed to facilitate comparisons of tyrosine phosphorylation, motility, and viability of sperm prior to and following in vitro capacitation in fresh and frozen-thawed sperm. We hypothesized that equine spermatozoa undergo tyrosine phosphorylation during capacitation and that this phosphorylation is modified when sperm have been cryopreserved. We also hypothesized that tyrosine phosphorylation could be enhanced by the use of the activators dibutyryl cAMP (db cAMP) and caffeine, as well as methyl beta-cyclodextrin-which causes cholesterol efflux from the spermatozoa-and inhibited by the protein kinase A (PK-A) inhibitor H-89. Our results indicate that equine sperm capacitation is mediated by a signaling pathway that involves cAMP-dependent PK-A and tyrosine kinases and that cryopreserved sperm may be more sensitive to inducers of capacitation, which could explain their limited life span when compared with fresh sperm.  相似文献   

8.
肝素处理山羊精子体外获能的研究   总被引:9,自引:0,他引:9  
系统研究了作用浓度、时间和温度以及输卵管上皮细胞和卵丘细胞对肝素处理山羊精子体外获能后的精子活力、质膜完整性、顶体完整率、获能比例及受精和卵裂的影响,为改善山羊精子体外获能效果和研究获能机理提供了必要的数据。主要实验结果如下:1、在获能液中添加5、10、25、50和100μg/mL肝素处理45min时,添加50和100μg/mL肝素精子获能比率最高(分别为55%和56%),但添加100μg/mL肝素处理后顶体完整率明显(P<0.05)低于对照组。说明山羊精子获能的最佳肝素浓度为50μg/mL。2、肝素作用时间(0, 10, 20, 30, 45, 60 和120 min)的延长,获能精子比例逐渐提高。其中,肝素处理45~120 min各组的获能精子比例差异不显著(P>0.05),处理120 min组的精子活力和质膜完整率显著低于其它各组。说明50μg/mL肝素处理精子获能的最佳时间是45~60 min。3、在42℃和38.5℃下处理时,获能精子比例显著高于15℃和37℃,但42℃处理后精子活力和顶体完整率显著低于其它温度。因此,385℃为山羊精子获能的最佳温度。4、与输卵管上皮细胞共培养获能精子比例显著高于对照组和卵丘细胞组,但精子活力、质膜完整率和顶体完整率差异不显著。输卵管上皮组的受精率(91.3%)和卵裂率(72.2%)显著高于对照组(81.2%,65.0%)。说明与输卵管上皮细胞共培养能显著提高肝素处理山羊精子体外获能的效果。  相似文献   

9.
Only capacitated sperm cells are able to fertilize egg cells, and this process is triggered by high levels of bicarbonate. Bicarbonate renders the plasma membrane more fluid, which is caused by protein kinase A (PKA)-mediated alterations in the phospholipid (PL) bilayer. We studied exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in human sperm cells. Surface exposure of PS and PE on sperm cell activation in vitro was found to be bicarbonate dependent and restricted to the apical area of the head plasma membrane. The PL scrambling in bicarbonate-triggered human sperm was not related to apoptosis, because the incubated cells did not show any signs of caspases or degeneration of mitochondria or DNA. The PL scramblase (PLSCR) gene family has been implicated in this nonspecific, bidirectional PL movement. A 25-kDa isoform of PLSCR was identified that was homogeneously distributed in human sperm cells. We propose that compartment-dependent activation of PKA is required for the surface exposure of aminophospholipids at the apical plasma membrane of sperm cells. Bicarbonate-induced PL scrambling appears to be an important event in the capacitation process, because the entire intact scrambling sperm subpopulation showed extensive tyrosine phosphorylation, which was absent in the nonscrambling subpopulation. The proportion of live cells with PL scrambling corresponded with that showing capacitation-specific chlortetracyclin staining.  相似文献   

10.
After capacitation of guinea pig spermatozoa in vitro, the plasma membrane was mechanically separated from the spermatozoa in the presence or absence of HgCl2 and subsequently isolated by density gradient centrifugation. Examination of the spermatozoa by electron microscopy after homogenization in the presence of HgCl2 revealed that plasma membrane was removed only from the acrosomal region and remained predominately intact posterior to the equatorial segment of the sperm head, as well as the midpiece and tail. In comparison, spermatozoa homogenized under similar buffer conditions but in the absence of HgCl2 lose the large apical segment of the acrosome and the plasma membrane is removed essentially from the entire cell. If spermatozoa were homogenized in the absence of Hg2+, analysis of plasma membrane phospholipid composition revealed a complete loss of lysophosphatidylcholine (LPC) from the plasma membrane after incubation of spermatozoa in minimal capacitating medium (MCM-PL) for 2 hours. Under these culture conditions the addition of Ca2+ (5 mM) to the capacitated spermatozoa induced approximately 78 ± 5% (n = 3) of the motile spermatozoa to undergo acrosome reactions while still maintaining sperm motility (80 ± 5%) (n = 3). If the spermatozoa were homogenized in the presence of Hg2+, a time course study revealed that plasma membrane LPC loss occurred between 60 and 90 minutes of incubation. This complete loss of LPC was evident when approximately half of the capacitated spermatozoa had undergone acrosome reactions. Incubation of the spermatozoa with the metabolic and acrosome reaction inhibitor, 2-deoxyglucose (10 mM) for 2 hours, maintained the plasma membrane phospholipid composition similar to that in the noncapacitated state. These data provide evidence that changes in the plasma membrane phospholipid composition may be associated with guinea pig sperm capacitation.  相似文献   

11.
The surface of spermatozoa plays a critical role in many stages involved in fertilisation. The plasma membrane undergoes important alterations in the male and female reproductive tract, which result in the ability of spermatozoa to fertilise eggs. One of these membrane modifications is sperm capacitation, a process by which sperm interacts with the zona pellucida receptors leading to the acrosome reaction. It has been proposed that the freezing process induces capacitation-like changes to spermatozoa, and that this premature capacitation could explain the reduction in longevity and fertilising capacity of cryopreserved mammalian spermatozoa. Our research focused on the relationship between membrane alterations occurring throughout freezing-thawing and the processes of capacitation and acrosome reaction. We used centrifugal countercurrent distribution (CCCD) analysis to compare the partition behaviour of ram spermatozoa that was either subjected to cold-shock or frozen-thawed with capacitated and acrosome reacted samples. In addition, the effect of the induced acrosome reaction on membrane integrity of ram spermatozoa was studied using biochemical markers and electron microscopy scanning. The CCCD analysis revealed important similarities between the surface characteristics of capacitated and cold-shocked sperm as well as between acrosome-reacted and frozen-thawed sperm. Cold-shocked and capacitated sperm showed an increased cell affinity for the lower dextran-rich phase as well as a decreased heterogeneity. Likewise, the induction of the acrosome reaction resulted in a loss of viability and an important decrease in cell surface heterogeneity compared to the untreated-control sample. Similar surface changes were found when semen samples were frozen with either Fiser or milk-yolk extender. These results confirm those obtained for membrane integrity by fluorescence markers. Thus, the high cell viability value found in the control sample (74.5%) was greatly decreased after cold-shock (22.2%), cryopreservation (26.38% Fiser medium, 24.8% milk-yolk medium) and acrosome reaction (6.6%), although it was preserved after inducing capacitation (46.7%). The study using electron microscopy scanning revealed dramatic structural alterations provoked by the induction of the acrosome reaction.  相似文献   

12.
Mammalian spermatozoa acquire full fertilizing ability only after a morphofunctional maturation called "capacitation." During this process the high level of bicarbonate present within the upper female genital tract or in culture medium induces a marked reorganization of sperm membranes characterized by a biphasic behavior: In a few minutes, it promotes membrane phospholipid scrambling preliminary to the apical translocation of sterol that, 2-4?h later, enables spermatozoa to recognize zona pellucida after albumin-mediated cholesterol extraction. In the present research it was demonstrated that spermatozoa incubated with bicarbonate in protein-free media underwent a marked reorganization of lipid microdomains present in a detergent-resistant membrane fraction (DRM) isolated by ultracentrifugation on sucrose density gradient. In fact, bicarbonate exposed sperm (ES) cells, compared with ejaculated spermatozoa (nonexposed sperm [nES] cells), displayed an increase in protein DRM content and, in particular, in Cav-1 and CD55, markers of caveolae and lipid rafts, as well in acrosin-2, a marker of the outer acrosomal membrane (OAM). Moreover, the amount of certain proteins involved in capacitation, such as the endocannabinoid system receptors cannabinoid receptor type 1 (CBR1) and transient receptor potential cation channel 1 (TRPV1), increased in DRM obtained from ES. These data allow us to hypothesize that sperm membrane reorganization takes place even in the absence of extracellular proteins; that not only the plasma membrane but also the OAM participate in this process; and that important molecules playing a key role in inside-out signaling, such as the endocannbinoid receptors TRPV1 and CBR1, are involved in this event, with potentially important consequences on sperm function.  相似文献   

13.
Sperm capacitation and acrosome reaction are essential for fertilization and they are considered as part of an oxidative process involving superoxide and hydrogen peroxide. In human spermatozoa, the amino acid L-arginine is a substrate for the nitric oxide synthase (NOS) producing nitric oxide (NO*), a reactive molecule that participates in capacitation as well as in acrosome reaction. L-arginine plays an important role in the physiology of spermatozoa and has been shown to enhance their metabolism and maintain their motility. Moreover, L-arginine has a protective effect on spermatozoa against the sperm plasma membrane lipid peroxidation. In this paper, we have presented, for the first time, the effect of L-arginine on cryopreserved bovine sperm capacitation and acrosome reaction and the possible participation of NOS in both processes. Frozen-thawed bovine spermatozoa have been incubated in TALP medium with different concentrations of L-arginine and the percentages of capacitated and acrosome reacted spermatozoa have been determined. L-arginine induced both capacitation and acrosome reaction. NO* produced by L-arginine has been inhibited or inactivated using NOS inhibitors or NO* scavengers in the incubation medium, respectively. Thus, the effect of NOS inhibitors and NO* scavengers in capacitated and non-capacitated spermatozoa treated with L-arginine has also been monitored. The data presented suggest the participation of NO*, produced by a sperm NOS, in cryopreseved bovine sperm capacitation and acrosome reaction.  相似文献   

14.
Capacitation of spermatozoa, a complex process occurring after sperm ejaculation, is required to produce fertilization of the oocyte in vivo and in vitro. Although this process results from a poorly understood series of morphological and molecular events, protein tyrosine phosphorylation has been associated with sperm capacitation in several mammalian species, but it still remains to be demonstrated in ram spermatozoa. Studies of capacitation in ram spermatozoa are of great interest, since several reports have suggested that the reduced fertility of cryopreserved spermatozoa is due to their premature capacitation. In this work, we report for the first time, to our knowledge, that tyrosine phosphorylation of ram sperm membrane proteins is related to the capacitation state of these cells. Capacitation induced tyrosine phosphorylation of some plasma membrane proteins of ram spermatozoa freed from seminal plasma by a dextran/swim-up procedure. It has also been proved that cold-shock induces protein tyrosine phosphorylation as well as a decrease in plasma membrane integrity. Addition of seminal plasma proteins prior to cold-shock not only improved sperm survival but also promoted a decrease in protein tyrosine phosphorylation.  相似文献   

15.
1. Evidence has been provided for the transfer of phosphatidyl[14C]choline and [3H]cholesterol between bovine serum albumin and cauda epididymal rat spermatozoa in Krebs-Ringer bicarbonate medium, which can promote sperm capacitation. 2. An analysis of the lipid composition in both albumin and spermatozoa revealed that phospholipid levels decreased in the protein and increased by roughly comparable amounts in sperm cells during incubation in vitro. 3. Cholesterol (free + ester) increased in albumin and decreased in spermatozoa. Changes in the amount of esterified cholesterol were solely responsible for the increase associated with albumin, whereas whole sperm cell extracts showed a significant decline in free cholesterol. 4. The composition of albumin-bound fatty acids did not alter appreciably as a result of incubation with spermatozoa. 5. Rates of [14C]palmitic acid utilization by spermatozoa suggest that lipid synthesis accounted for less than 5% of the changes observed under the conditions of this study. 6. These results are interpreted as broadly supporting our previous proposal that lipid exchange between albumin and sperm cells is implicated in sperm capacitation in vitro. Specifically, the results are compatible with the idea that a decreased cholesterol/phospholipid ratio in the sperm plasma membrane facilitates this transformation.  相似文献   

16.
The present study investigates whether a 5 hour capacitation period modifies the ability of human spermatozoa to undergo induced acrosomal loss. Human sperm acrosomal loss was induced by treatment with either the calcium ionophore A23187, low concentrations of the phospholipid dilauroylphosphatidylcholine (PC12), or 2 hours incubation in conditioned medium prepared from human cumulus cells (CM/CC). The use of a dual staining method (FITC-ConA and Hoechst 33258) for simultaneous assessment of acrosomal status and viability demonstrated that induction of acrosomal loss with calcium ionophore was not dependent on a capacitation period. A short (5 hour) incubation period was not sufficient to induce acrosomal loss with CM/CC above spontaneous acrosome reaction rates in medium alone. A significant capacitation-dependent increase (P < 0.05) in acrosomal loss was observed when human spermatozoa were incubated with PC12. Induction of acrosomal loss of capacitated human spermatozoa with PC12 therefore provides a simple assay for the simultaneous assessment of human sperm capacitation and the acrosome reaction in vitro.  相似文献   

17.
Following the discovery of mammalian sperm capacitation and its fundamental importance for the acquisition of fertilizing potential, it has gradually become possible to identify some specific molecules and molecular events that play pivotal roles in the “switching on” of spermatozoa. These are discussed in the context of the promotion and regulation of capacitation, emphasizing differences between commonly used conditions in vitro and the environment in vivo where spermatozoa normally undergo capacitation. Although typical culture media used in vitro do support capacitation, they do not prevent capacitated cells from undergoing spontaneous acrosome reactions and so losing fertilizing potential. This is not a problem in vitro, but could be in vivo where few spermatozoa reach the site of fertilization. Several small molecules, known to be present in vivo, have been shown in vitro to bind to spermatozoa and to regulate capacitation, first accelerating capacitation and then inhibiting spontaneous acrosome reactions, by regulating cAMP production. Since spermatozoa would contact these molecules during and after ejaculation, it is plausible that they serve a similar function in vivo. The mechanisms whereby the presence or absence of decapacitation factors might alter plasma membrane architecture and so alter functionality of a number of membrane‐associated enzymes involved in capacitation are also considered. Finally, several unresolved issues relating to events during capacitation are discussed. Mol. Reprod. Dev. 77: 197–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
In this study, the use of methyl-beta-cyclodextrin (MBCD) to support capacitation of sperm cells was studied. Sperm were incubated with MBCD or alternatively capacitated in an in vitro fertilization medium. The effects of these incubations on phospholipid scrambling (using merocyanin), cholesterol depletion, GM-1 localization (using cholera-toxin B (CTX)), and membrane deterioration were assessed. For comparison, this was also tested in MBCD-treated MDCK cells. In MDCK cells, upto 71% of cholesterol was depleted, which coincided with a more diffuse CTX staining without any obvious effects on cell viability. In sperm, a similar depletion of 53% cholesterol was found after a 10 mM MBCD treatment. However, no merocyanin response was observed in viable sperm after MBCD treatments (indicating a lack of membrane changes associated with sperm capacitation). In contrast to MDCK, cells >1 mM MBCD caused plasma membrane disintegration and rendered sperm immotile. At higher concentrations also acrosome disruption was noted. CTX staining was absent at < 0.1 mM MBCD incubations but appeared at higher MBCD levels and was found to be specific for deteriorated cells that showed morphological signs of acrosome disruption. No significant plasma membrane deterioration, acrosome disruption, and sperm immotility nor CTX staining and only a modest (< 15%) cholesterol depletion were observed in conventionally capacitated sperm, where 40% of the intact sperm showed merocyanin staining. Taken together, the results indicate that membranes of sperm are more sensitive to MBCD-mediated cholesterol depletion than MDCK cells and that the use of MBCD to support sperm capacitation cannot be recommended due to its spermicidal effects.  相似文献   

19.
Heparin (a glycosaminoglycan) and quercetin (a calcium-ATPase plasma membrane specific inhibitor) induce bovine sperm capacitation. Mitochondria from frozen semen are capable of generating oxidative energy. The aim of the study was to determine oxygen uptake variation and the participation of diphenileneiodonium (DPI)-sensitive oxidases from spermatozoa capacitated with heparin or quercetin. Oxygen uptake was measured polarographically and 2 microM diphenileneiodonium (DPI) was used as a specific inhibitor of NAD(P)H-oxidases. Sperm capacitation was determined by the chlorotetracycline technique. Heparin produced a respiratory burst (17.0+/-3.2 microL O2/h/10(8) spermatozoa; mean+/-S.D.) versus control (11.3+/-0.9 microL O2/h/10(8) spermatozoa; P<0.05). Oxygen uptake and sperm hypermotility were inhibited by cyanide. Treatment with DPI blocked heparin capacitation and oxygen uptake (cyanide-sensitive) decreased to control levels. Respiration of quercetin-treated samples (cyanide-sensitive; 9.7+/-0.7 microL O2/h/10(8) spermatozoa) was not significantly different from the controls; oxygen uptake was not modified by DPI, but quercetin capacitation was inhibited (P<0.05). The effect of DPI with heparin confirmed that oxidases participate in capacitation induction. The addition of superoxide dismutase and/or catalase to heparin- or quercetin-treated samples, failed to modify oxygen uptake and blocked capacitation (P<0.05), suggesting that the superoxide anion (O2*-) participates in the capacitation induction. High mitochondrial activity from heparin-treated samples indicated that energy requirements, especially for hypermotility, were supported by the respiratory chain. Although a respiratory burst was not produced by quercetin, DPI-sensitive-oxidases (O2*- source) were necessary for capacitation. In cryopreserved bovine spermatozoa, heparin- or quercetin-induced capacitation required different levels of mitochondrial energy and DPI-sensitive oxidase activity.  相似文献   

20.
The aim of the present study was to determine the influence of chicken semen cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activities. Pooled semen from 10 Black Minorca roosters was used in the study. Semen samples were subjected to cryopreservation using the “pellet” method and dimethylacetamide (DMA) as a cryoprotectant. In the fresh and the frozen-thawed semen sperm membrane integrity (SYBR-14/propidium iodide (PI)), acrosomal damage (PNA-Alexa Fluor®488) and mitochondrial activity (Rhodamine 123) were assessed using flow cytometry. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma by spectrophotometry. All sperm characteristics evaluated using flow cytometry were affected by cryopreservation. After freezing-thawing, there was significant (P < 0.01) reduction in sperm membrane integrity, sperm acrosome integrity and mitochondrial activity. Following cryopreservation, MDA concentration significantly increased in chicken seminal plasma and spermatozoa (P < 0.01, P < 0.05). The CAT activity in seminal plasma significantly decreased (P < 0.05), while intracellular activity of this enzyme did not significantly change in frozen-thawed semen. In seminal plasma of frozen-thawed semen the significant increase (P < 0.01) in GPx activity was detected. Whereas GPx activity in spermatozoa remained statistically unchanged after thawing. The SOD activity significantly increased (P < 0.01) in cryopreserved seminal plasma with simultaneous decrease (P < 0.01) of its activity in cells. In conclusion, this is probably the first report describing the level of antioxidant enzymes in frozen-thawed avian semen. The present study showed that the activity of CAT, GPx and SOD in chicken semen was affected by cryopreservation, what increased the intensity of lipid peroxidation (LPO). Catalase appeared to play an important role in the sperm antioxidant defense strategy at cryopreservation since, opposite to SOD and GPx, its content was clearly reduced by the cryopreservation process. Change in the antioxidant defense status of the chicken spermatozoa and surrounding seminal plasma might affect the semen quality and sperm fertilizing ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号