首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein—a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both α- and β-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility.  相似文献   

2.
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.  相似文献   

3.
One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.  相似文献   

4.
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.  相似文献   

5.
I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression. I1 dynein assembles into the axoneme, but the IC138 IC/LC subcomplex is missing. bop5 strains, like other I1 mutants, swim forward with reduced swimming velocities and display an impaired reversal response during photoshock. Unlike mutants lacking the entire I1 dynein, however, bop5 strains exhibit normal phototaxis. bop5 defects are rescued by transformation with the wild-type IC138 gene. Analysis of flagellar waveforms reveals that loss of the IC138 subcomplex reduces shear amplitude, sliding velocities, and the speed of bend propagation in vivo, consistent with the reduction in microtubule sliding velocities observed in vitro. The results indicate that the IC138 IC/LC subcomplex is necessary to generate an efficient waveform for optimal motility, but it is not essential for phototaxis. These findings have significant implications for the mechanisms by which IC/LC complexes regulate dynein motor activity independent of effects on cargo binding or complex stability.  相似文献   

6.
To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.  相似文献   

7.
Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and measured microtubule sliding velocity in buffers containing 1 mM ATP and various concentrations of calcium. In buffers with pCa > 8, microtubule sliding velocity in axonemes lacking the central apparatus (pf18 and pf15) was reduced compared with that of wild-type axonemes. In contrast, at pCa4, dynein activity in pf18 and pf15 axonemes was restored to wild-type level. The calcium-induced increase in dynein activity in pf18 axonemes was inhibited by antagonists of calmodulin and calmodulin-dependent kinase II. Axonemes lacking the C1 central tubule (pf16) or lacking radial spoke components (pf14 and pf17) do not exhibit calcium-induced increase in dynein activity in pCa4 buffer. We conclude that calcium regulation of flagellar motility involves regulation of dynein-driven microtubule sliding, that calmodulin and calmodulin-dependent kinase II may mediate the calcium signal, and that the central apparatus and radial spokes are key components of the calcium signaling pathway.  相似文献   

8.
Kon T  Nishiura M  Ohkura R  Toyoshima YY  Sutoh K 《Biochemistry》2004,43(35):11266-11274
Cytoplasmic dynein is a microtubule-based motor protein that is responsible for most intracellular retrograde transports along microtubule filaments. The motor domain of dynein contains six tandemly linked AAA (ATPases associated with diverse cellular activities) modules, with the first four containing predicted nucleotide-binding/hydrolysis sites (P1-P4). To dissect the functions of these multiple nucleotide-binding/hydrolysis sites, we expressed and purified Dictyostelium dynein motor domains in which mutations were introduced to block nucleotide binding at each of the four AAA modules, and then examined their detailed biochemical properties. The P1 mutant was trapped in a strong-binding state even in the presence of ATP and lost its motile activity. The P3 mutant also showed a high affinity for microtubules in the presence of ATP and lost most of the microtubule-activated ATPase activity, but retained microtubule sliding activity, although the sliding velocity of the mutant was more than 20-fold slower than that of the wild type. In contrast, mutation in the P2 or P4 site did not affect the apparent binding affinity of the mutant for microtubules in the presence of ATP, but reduced ATPase and microtubule sliding activities. These results indicate that ATP binding and its hydrolysis only at the P1 site are essential for the motor activities of cytoplasmic dynein, and suggest that the other nucleotide-binding/hydrolysis sites regulate the motor activities. Among them, nucleotide binding at the P3 site is not essential but is critical for microtubule-activated ATPase and motile activities of cytoplasmic dynein.  相似文献   

9.
Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.  相似文献   

10.
Dyneins are high molecular weight microtubule based motor proteins responsible for beating of the flagellum. The flagellum is important for the viability of trypanosomes like Leishmania. However, very little is known about dynein and its role in flagellar motility in such trypanosomatid species. Here, we have identified genes in five species of Leishmania that code for outer-arm dynein (OAD) heavy chains α and β, and inner-arm dynein (IAD) heavy chains 1α and 1β using BLAST and MSA. Our sequence analysis indicates that unlike the three-headed outer-arm dyneins of Chlamydomonas and Tetrahymena, the outer-arm dyneins of the genus Leishmania are two-headed, lacking the γ chain like that of metazoans. N-terminal sequence analysis revealed a conserved IQ-like calmodulin binding motif in the outer-arm α and inner-arm 1α dynein heavy chain in the five species of Leishmania similar to Chlamydomonas reinhardtii outer-arm γ. It was predicted that both motifs were incapable of binding calmodulin. Phosphorylation site prediction revealed conserved serine and threonine residues in outer-arm dynein α and inner-arm 1α as putative phosphorylation sites exclusive to Leishmania but not in Trypanosoma brucei suggesting that regulation of dynein activity might be via phosphorylation of these IQ-like motifs in Leishmania sp.  相似文献   

11.
12.
Cytoplasmic dynein is an AAA(+)-type molecular motor whose major components are two identical heavy chains containing six AAA(+) modules in tandem. It moves along a single microtubule in multiple steps which are accompanied with multiple ATP hydrolysis. This processive sliding is crucial for cargo transports in vivo. To examine how cytoplasmic dynein exhibits this processivity, we performed in vitro motility assays of two-headed full-length or truncated single-headed heavy chains. The results indicated that four to five molecules of the single-headed heavy chain were required for continuous microtubule sliding, while approximately one molecule of the two-headed full-length heavy chain was enough for the continuous sliding. The ratio of the stroking time to the total ATPase cycle time, which is a quantitative indicator of the processivity, was approximately 0.2 for the single-headed heavy chain, while it was approximately 0.6 for the full-length molecule. When two single-headed heavy chains were artificially linked by a coiled-coil of myosin, the processivity was restored. These results suggest that the two heads of a single cytoplasmic dynein communicate with each other to take processive steps along a microtubule.  相似文献   

13.
Cytoplasmic dynein is a minus-end directed microtubule motor and plays important roles in the transport of various intracellular cargoes. Cytoplasmic dynein comprises two identical heavy chains and forms a dimer (double-headed dynein); the total molecular weight of the cytoplasmic dynein complex is about 1.5 million. The dynein motor domain is structurally very different from those of kinesin and myosin, and our understanding of the mechanisms of dynein energy transduction is limited mainly because of the difficulty in obtaining a sufficient quantity of purified and active cytoplasmic dynein. We purified cytoplasmic dynein, which was free from dynactin and other dynein-associated proteins. The purified cytoplasmic dynein was active in an in vitro motility assay. The controlled dialysis of the purified dynein against 4 M urea resulted in its complete dissociation into monomeric species (single-headed dynein). The separation of the dynein heads by the treatment was reversible. The MgATPase activities of the single-headed and reconstituted double-headed dynein were comparable to that of intact dynein. The double-headed dynein bundled microtubules in the absence of ATP; the single-headed dynein did not. The single-headed dynein produced in vitro microtubule-gliding motility at velocities very similar to those of double-headed dynein at various ATP concentrations. These results indicate that a single cytoplasmic dynein heavy chain is sufficient to produce robust microtubule motility. Application of the double- and single-headed dynein molecules in various assay systems will elucidate the mechanism of action of the cytoplasmic dynein.  相似文献   

14.
Cytoplasmic dynein is a force-transducing ATPase that powers the movement of cellular cargoes along microtubules. Two identical heavy chain polypeptides (> 500 kDa) of the cytoplasmic dynein complex contain motor domains that possess the ATPase and microtubule-binding activities required for force production [1]. It is of great interest to determine whether both heavy chains (DHCs) in the dynein complex are required for progression of the mechanochemical cycle and motility, as observed for other dimeric motors. We have used transgenic constructs to investigate cooperative interactions between the two motor domains of the Drosophila cytoplasmic dynein complex. We show that 138 kDa and 180 kDa amino-terminal fragments of DHC can assemble with full-length DHC to form heterodimeric complexes containing only a single motor domain. The single-headed dynein complexes can bind and hydrolyze ATP, yet do not show the ATP-induced detachment from microtubules that is characteristic of wild-type homodimeric dynein. These results suggest that cooperative interactions between the monomeric units of the dimer are required for efficient ATP-induced detachment of dynein and unidirectional movement along the microtubule.  相似文献   

15.
Flagellar motility is generated by the activity of multiple dynein motors, but the specific role of each dynein heavy chain (Dhc) is largely unknown, and the mechanism by which the different Dhcs are targeted to their unique locations is also poorly understood. We report here the complete nucleotide sequence of the Chlamydomonas Dhc1 gene and the corresponding deduced amino acid sequence of the 1alpha Dhc of the I1 inner dynein arm. The 1alpha Dhc is similar to other axonemal Dhcs, but two additional phosphate binding motifs (P-loops) have been identified in the NH(2)- and COOH-terminal regions. Because mutations in Dhc1 result in motility defects and loss of the I1 inner arm, a series of Dhc1 transgenes were used to rescue the mutant phenotypes. Motile cotransformants that express either full-length or truncated 1alpha Dhcs were recovered. The truncated 1alpha Dhc fragments lacked the dynein motor domain, but still assembled with the 1beta Dhc and other I1 subunits into partially functional complexes at the correct axoneme location. Analysis of the transformants has identified the site of the 1alpha motor domain in the I1 structure and further revealed the role of the 1alpha Dhc in flagellar motility and phototactic behavior.  相似文献   

16.
Two activators of microtubule-based vesicle transport   总被引:44,自引:23,他引:21       下载免费PDF全文
Cytoplasmic dynein purified by nucleotide dependent microtubule affinity has significant minus end-directed vesicle motor activity that decreases with each further purification step. Highly purified dynein causes membrane vesicles to bind but not move on microtubules. We exploited these observations to develop an assay for factors that, in combination with dynein, would permit minus end-directed vesicle motility. At each step of the purification, non-dynein fractions were recombined with dynein and assayed for vesicle motility. Two activating fractions were identified by this method. One, called Activator I, copurified with 20S dynein by velocity sedimentation but could be separated from it by ion exchange chromatography. Activator I increased only the frequency of dynein-driven vesicle movements. Activator II, sedimenting at 9S, increased both the frequency and velocity of vesicle transport and also supported plus end movements. Our results suggest that dynein-based motility is controlled at multiple levels and provide a preliminary characterization of two regulatory factors.  相似文献   

17.
For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.  相似文献   

18.
Fungal tip growth underlies substrate invasion and is essential for fungal virulence. It requires the activity of molecular motors that deliver secretory vesicles to the growth region or which mediate bi-directional motility of early endosomes. Visualizing motors and their cargo in living fungal cells revealed unexpected cooperation between motors in membrane trafficking: (1) Class V chitin synthase, which has a class 17 myosin motor domain, moves bi-directionally, with myosin-5 and kinesin-1 cooperating in delivery to the growth region, and dynein taking it back to the cell centre. The myosin-17 motor domain competes with dynein by tethering the chitin synthase to the plasma membrane before exocytosis; (2) Long-range endosome motility is based on a cooperation of kinesin-3 and dynein, but towards the microtubule plus-end dynein competes with kinesin-3 to prevent the organelles from 'falling off the track'. These results reveal a fine-balanced network of cooperative and competitive motor activity, required for fungal morphogenesis.  相似文献   

19.
Dynein is a minus-end–directed microtubule motor important for mitotic spindle positioning. In budding yeast, dynein activity is restricted to anaphase when the nucleus enters the bud neck, yet the nature of the underlying regulatory mechanism is not known. Here, the microtubule-associated protein She1p is identified as a novel regulator of dynein activity. In she1Δ cells, dynein is activated throughout the cell cycle, resulting in aberrant spindle movements that misposition the spindle. We also found that dynactin, a cofactor essential for dynein motor function, is a dynamic complex whose recruitment to astral microtubules (aMTs) increases dramatically during anaphase. Interestingly, loss of She1p eliminates the cell-cycle regulation of dynactin recruitment and permits enhanced dynactin accumulation on aMTs throughout the cell cycle. Furthermore, localization of the dynactin complex to aMTs requires dynein, suggesting that dynactin is recruited to aMTs via interaction with dynein and not the microtubule itself. Lastly, we present evidence supporting the existence of an incomplete dynactin subcomplex localized at the SPB, and a complete complex that is loaded onto aMTs from the cytoplasm. We propose that She1p restricts dynein-dependent spindle positioning to anaphase by inhibiting the association of dynein with the complete dynactin complex.  相似文献   

20.
NudE and NudEL are related proteins that interact with cytoplasmic dynein and LIS1. Their functional relationship and involvement in LIS1 and dynein regulation are not completely understood. We find that NudE and NudEL each localize to mitotic kinetochores before dynein, dynactin, ZW10, and LIS1 and exhibit additional temporal and spatial differences in distribution from the motor protein. Inhibition of NudE and NudEL caused metaphase arrest with misoriented chromosomes and defective microtubule attachment. Dynein and dynactin were both displaced from kinetochores by the injection of an anti-NudE/NudEL antibody. Dynein but not dynactin interacted with NudE surprisingly through the dynein intermediate and light chains but not the motor domain. Together, these results identify a common function for NudE and NudEL in mitotic progression and identify an alternative mechanism for dynein recruitment to and regulation at kinetochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号