首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylation at the 5-position of cytosine [m5C (5-methylcytidine)] occurs at three RNA nucleotides in Escherichia coli. All these modifications are at highly conserved nucleotides in the rRNAs, and each is catalyzed by its own m5C methyltransferase enzyme. Two of the enzymes, RsmB and RsmF, are already known and methylate 16S rRNA at nucleotides C967 and C1407, respectively. Here, we report the identity of the third E. coli m5C methyltransferase. Analysis of rRNAs by matrix-assisted laser desorption/ionization mass spectrometry showed that inactivation of the yccW gene leads to loss of m5C methylation at nucleotide 1962 in E. coli 23S rRNA. This methylation is restored by complementing the knockout strain with a plasmid-encoded copy of the yccW gene. Purified recombinant YccW protein retains its specificity for C1962 in vitro and methylates naked 23S rRNA isolated from the yccW knockout strain. However, YccW does not methylate assembled 50S subunits, and this is somewhat surprising as the published crystal structures show nucleotide C1962 to be fully accessible at the subunit interface. YccW-directed methylation at nucleotide C1962 is conserved in bacteria, and loss of this methylation in E. coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m5C methyltransferases RsmB and RsmF and is in fact more similar to known m5U (5-methyluridine) RNA methyltransferases. In keeping with the previously proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI.  相似文献   

2.
Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m5C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m5C967. In contrast to E. coli RsmF, which introduces a single m5C1407 modification, T. thermophilus RsmF modifies three positions, generating m5C1400 and m5C1404 in addition to m5C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 Å resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.  相似文献   

3.
4.
N6-methyladenosine (m6A) is the most abundant modification in mammalian mRNA and long noncoding RNA (lncRNA). Recent discoveries of two m6A demethylases and cell-type and cell-state-dependent m6A patterns indicate that m6A modifications are highly dynamic and likely play important biological roles for RNA akin to DNA methylation or histone modification. Proposed functions for m6A modification include mRNA splicing, export, stability, and immune tolerance; but m6A studies have been hindered by the lack of methods for its identification at single nucleotide resolution. Here, we develop a method that accurately determines m6A status at any site in mRNA/lncRNA, termed site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET). The method determines the precise location of the m6A residue and its modification fraction, which are crucial parameters in probing the cellular dynamics of m6A modification. We applied the method to determine the m6A status at several sites in two human lncRNAs and three human mRNAs and found that m6A fraction varies between 6% and 80% among these sites. We also found that many m6A candidate sites in these RNAs are however not modified. The precise determination of m6A status in a long noncoding RNA also enables the identification of an m6A-containing RNA structural motif.  相似文献   

5.
Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally crowded stretch of the rRNA sequence. Here, we show that the Sgm methyltransferase confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides by introducing the 16S rRNA modification m7G1405 within the ribosomal A site. This region of Escherichia coli 16S rRNA already contains several methylated nucleotides including m4Cm1402 and m5C1407. Modification at m5C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance, is less able to interfere with RsmF methylation on the 30S subunit. The two methylations at 16S rRNA nucleotide m4Cm1402 are unaffected by both the wild-type and the mutant versions of Sgm. The data indicate that interplay between resistance methyltransferases and the cell''s own indigenous methyltransferases can play an important role in determining resistance levels.  相似文献   

6.
The plasma membrane H+-ATPase provides the driving force for solute transport via an electrochemical gradient of H+ across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H+-ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H+-ATPase (pT H+-ATPase) and non-pT H+-ATPase as in the green algae, and that pT H+-ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H+-ATPase genes, designated PpHA (Physcomitrella patens H+-ATPase). Six isoforms are the pT H+-ATPase; a remaining isoform is non-pT H+-ATPase. An apparent 95-kD protein was recognized by anti-H+-ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H+-ATPase. Furthermore, we could not detect the pT H+-ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H+-ATPase most likely appeared for the first time in bryophyte.  相似文献   

7.
8.
9.
In most cells, cationic amino acids such as l-arginine, l-lysine, and l-ornithine are transported by cationic (CAT) and y+L (y+LAT) amino acid transporters. In human erythrocytes, the cysteine-modifying agent N-ethylmaleimide (NEM) has been shown to inhibit system y+ (most likely CAT-1), but not system y+L (Devés, R., Angelo, S., and Chávez, P. (1993) J. Physiol. 468, 753–766). We thus wondered if sensitivity to NEM distinguishes generally all CAT and y+LAT isoforms. Transport assays in Xenopus laevis oocytes established that indeed all human CATs (including the low affinity hCAT-2A), but neither y+LAT isoform, are inhibited by NEM. hCAT-2A inhibition was not due to reduced transporter expression in the plasma membrane, indicating that NEM reduces the intrinsic transporter activity. Individual mutation of each of the seven cysteine residues conserved in all CAT isoforms did not lead to NEM insensitivity of hCAT-2A. However, a cysteine-less mutant was no longer inhibited by NEM, suggesting that inhibition occurs through modification of more than one cysteine in hCAT-2A. Indeed, also the double mutant C33A/C273A was insensitive to NEM inhibition, whereas reintroduction of a cysteine at either position 33 or 273 in the cysteine-less mutant led to NEM sensitivity. We thus identified Cys-33 and Cys-273 in hCAT-2A as the targets of NEM inhibition. In addition, all proteins with Cys-33 mutations showed a pronounced reduction in transport activity, suggesting that, surprisingly, this residue, located in the cytoplasmic N terminus, is important for transporter function.  相似文献   

10.
We have shown that Rpl3, a protein of the large ribosomal subunit from baker''s yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-3H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven β-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.  相似文献   

11.
The fate of stem cells is intricately regulated by numerous extrinsic and intrinsic factors that promote maintenance or differentiation. The RNA-binding translational repressor Pumilio (Pum) in conjunction with Nanos (Nos) is required for self-renewal, whereas Bam (bag-of-marbles) and Bgcn (benign gonial cell neoplasm) promote differentiation of germ line stem cells in the Drosophila ovary. Genetic analysis suggests that Bam and Bgcn antagonize Pum/Nos function to promote differentiation; however, the molecular basis of this epistatic relationship is currently unknown. Here, we show that Bam and Bgcn inhibit Pum function through direct binding. We identified a ternary complex involving Bam, Bgcn, and Pum in which Bam, but not Bgcn, directly interacts with Pum, and this interaction is greatly increased by the presence of Bgcn. In a heterologous reporter assay to monitor Pum activity, Bam, but not Bgcn, inhibits Pum activity. Notably, the N-terminal region of Pum, which lacks the C-terminal RNA-binding Puf domain, mediates both the ternary protein interaction and the Bam inhibition of Pum function. These studies suggest that, in cystoblasts, Bam and Bgcn may directly inhibit Pum/Nos activity to promote differentiation of germ line stem cells.  相似文献   

12.
Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811–823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.  相似文献   

13.
Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.  相似文献   

14.
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b5 were found to support a high NOD activity. Cygb-NOD activity shows respective Km values for ascorbate, cytochrome b5, NO, and O2 of 0.25 mm, 0.3 μm, 40 nm, and ∼20 μm and achieves a kcat of 0.5 s−1. Ascorbate and cytochrome b5 reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m−1 s−1 and 3 × 106 m−1 s−1, respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar kcat of 1.2 s−1, a Km(NO) of 40 nm, and a kcat/Km(NO) (kNOD) value of 3 × 107 m−1 s−1, demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O2] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b5 as reductants.  相似文献   

15.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   

16.
SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N5-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP+ is the last product to be released. The presence of NADP+ is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP+ to slide into position for stabilization of the C4a-hydroperoxyflavin.  相似文献   

17.

Background and Aims

In some lupin species, phosphate deficiency induces cluster-root formation, which enhances P uptake by increasing root surface area and, more importantly, the release of root exudates which enhances P availability.

Methods

Three species of Lupinus, L. albus, L. atlanticus and L. micranthus, with inherently different relative growth rates were cultivated under hydroponics in a greenhouse at four phosphate concentrations (1, 10, 50 and 150 µm) to compare the role of internal P in regulating cluster-root formation.

Key Results

The highest growth rate was observed in L. atlanticus, followed by L. albus and L. micranthus. At 1 µm P, cluster-root formation was markedly induced in all three species. The highest P uptake and accumulation was observed in L. micranthus, followed by L. atlanticus and then L. albus. Inhibition of cluster-root formation was severe at 10 µm P in L. atlanticus, but occurred stepwise with increasing P concentration in the root medium in L. albus.

Conclusions

In L. atlanticus and L. albus cluster-root formation was suppressed by P treatments above 10 µm, indicating a P-inducible regulating system for cluster-root formation, as expected. By contrast, production of cluster roots in L. micranthus, in spite of a high internal P concentration, indicated a lower sensitivity to P status, which allowed P-toxicity symptoms to develop.  相似文献   

18.
The c-type cytochromes are electron transfer proteins involved in energy transduction. They have heme-binding (CXXCH) sites that covalently ligate heme b via thioether bonds and are classified into different classes based on their protein folds and the locations and properties of their cofactors. Rhodobacter capsulatus produces various c-type cytochromes using the cytochrome c maturation (Ccm) System I, formed from the CcmABCDEFGHI proteins. CcmI, a component of the heme ligation complex CcmFHI, interacts with the heme-handling protein CcmE and chaperones apocytochrome c2 by binding its C-terminal helix. Whether CcmI also chaperones other c-type apocytochromes, and the effects of heme on these interactions were unknown previously. Here, we purified different classes of soluble and membrane-bound c-type apocytochromes (class I, c2 and c1, and class II c′) and investigated their interactions with CcmI and apoCcmE. We report that, in the absence of heme, CcmI and apoCcmE recognized different classes of c-type apocytochromes with different affinities (nm to μm KD values). When present, heme induced conformational changes in class I apocytochromes (e.g. c2) and decreased significantly their high affinity for CcmI. Knowing that CcmI does not interact with mature cytochrome c2 and that heme converts apocytochrome c2 into its b-type derivative, these findings indicate that CcmI holds the class I apocytochromes (e.g. c2) tightly until their noncovalent heme-containing b-type cytochrome-like intermediates are formed. We propose that these intermediates are subsequently converted into mature cytochromes following the covalent ligation of heme via the remaining components of the Ccm complex.  相似文献   

19.
Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated with the development of palmoplantar hyperkeratosis in the congenital skin disorder Mal de Meleda. In the present study, we have characterized a new member of the LU-protein domain family, which we find to be predominantly expressed in the stratum granulosum of human skin, thus resembling the expression of SLURP-1. In accordance with its expression pattern, we denote this protein product, which is encoded by the LYPD5 gene, as Haldisin (human antigen with LU-domains expressed in skin). Two of the five human glycolipid-anchored membrane proteins with multiple LU-domains characterized so far are predominantly confined to squamous epithelia (i.e., C4.4A), to stratum spinosum, and Haldisin to stratum granulosum under normal homeostatic conditions. Whether Haldisin is a prognostic biomarker for certain epithelial malignancies, like C4.4A and SLURP-1, remains to be explored.  相似文献   

20.
The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m1A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for second m1A2142 modification of helix 65 of 25S rRNA. The gene was identified by reversed phase–HPLC screening of all deletion mutants of putative RNA methyltransferase and was confirmed by gene complementation and phenotypic characterization. Because of the function of its encoded protein, YBR141C was named BMT2 (base methyltransferase of 25S RNA). Helix 65 belongs to domain IV, which accounts for most of the intersubunit surface of the large subunit. The 3D structure prediction of Bmt2 supported it to be an Ado Met methyltransferase belonging to Rossmann fold superfamily. In addition, we demonstrated that the substitution of G180R in the S-adenosyl-l-methionine–binding motif drastically reduces the catalytic function of the protein in vivo. Furthermore, we analysed the significance of m1A2142 modification in ribosome synthesis and translation. Intriguingly, the loss of m1A2142 modification confers anisomycin and peroxide sensitivity to the cells. Our results underline the importance of RNA modifications in cellular physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号