首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To develop oligonucleotide probes for visualizing bacteria belonging to Enterobacteriaceae. METHODS AND RESULTS: 24-mer oligonucleotide probe (probe D) was designed by comparison of 16S rDNA sequences of 35 species of Enterobacteriaceae, eight species of Vibrionaceae and six species of Pasteurellaceae. The sequence of the probe corresponding to the complementary sequence of a position 1251-1274 of Escherichia coli 16S rRNA was found to be a highly conserved region of 16S rDNA sequence in Enterobacteriaceae different from that of Vibrionaceae and Pasteurellaceae. The fluorescent dye-labelled probe was tested for the specificity by in situ hybridization and epifluorescence microscopy. Seventy-six out of 78 strains belonging to Enterobacteriaceae were visualized in an optimal hybridization condition. No bacterial strains belonging to Vibrionaceae (31 strains) and Gram-positive bacteria (three strains) were visualized. CONCLUSIONS: In situ hybridization using probe D allows the detection of bacterial cells belonging to Enterobacteriaceae without false positive reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: In situ hybridization techniques using the probe D are potential tools for detecting Enterobacteriaceae in food and water samples.  相似文献   

2.
This study demonstrates that Exonuclease III (Exo III) can be used to produce sufficient single-stranded (ss)DNA in chromosomes and cells to allow in situ hybridization. In this study, all of the probes were modified with biotin and the probe binding was visualized with fluorescein-labeled avidin. Exo III digestion starting at naturally occurring breaks in methanol-acetic acid preparations produced enough ssDNA for strong hybridization when human genomic DNA was used to probe human chromosomes. Pretreatment with the endonucleases EcoRI, Hind III and BamHI was used to produce more sites for initiation of Exo III digestion when using a chromosome-specific repetitive probe specific to a small chromosomal subregion near the telomere of human chromosome 1(1p36). The fluorescence intensity following hybridization to Exo Ill-treated targets was roughly equal to that following hybridization to thermally denatured targets, but background fluorescence was lower.  相似文献   

3.
植物病毒检测芯片的杂交条件优化   总被引:1,自引:0,他引:1  
利用芯片点样仪将5种侵染马铃薯的病毒/类病毒(苜蓿花叶病毒、黄瓜花叶病毒、黄瓜花叶病毒-卫星病毒、马铃薯病毒Y、马铃薯块茎纺锤状类病毒)的保守区寡核苷酸(Oligonucleotide,oligo)探针和PCR探针点样于玻片,并以植物18S rRNA作为内参照制成基因芯片。研究探针浓度、杂交时间、杂交温度以及点样液对芯片杂交的影响,并验证优化后病毒检测芯片的特异性。结果表明,寡核苷酸探针浓度介于5-20 ?mol/L之间对杂交信号强度影响不大,PCR探针浓度与杂交信号强度间呈线性关系;在45℃杂交4 h时,芯片的杂交信号最强,且该条件下进行杂交对两种探针芯片的影响趋势一致;点样液中以DMSO的杂交效果最好。经过整体条件优化后的两种探针芯片在杂交检测上具有较高的特异性,适于检测植物病毒。  相似文献   

4.
Real-time PCR assays have recently been developed for diagnostic and research purposes. Signal generation in real-time PCR is achieved with probe designs that usually depend on exonuclease activity of DNA polymerase (e.g. TaqMan probe) or oligonucleotide hybridization (e.g. molecular beacon). Probe design often needs to be specifically tailored either to tolerate or to differentiate between sequence variations. The conventional probe technologies offer limited flexibility to meet these diverse requirements. Here, we introduce a novel partially double-stranded linear DNA probe design. It consists of a hybridization probe 5'-labeled with a fluorophore and a shorter quencher oligo of complementary sequence 3'-labeled with a quencher. Fluorescent signal is generated when the hybridization probe preferentially binds to amplified targets during PCR. This novel class of probe can be thermodynamically modulated by adjusting (i) the length of hybridization probe, (ii) the length of quencher oligo, (iii) the molar ratio between the two strands and (iv) signal detection temperature. As a result, pre-amplification signal, signal gain and the extent of mismatch discrimination can be reliably controlled and optimized. The applicability of this design strategy was demonstrated in the Abbott RealTime HIV-1 assay.  相似文献   

5.
6.
Most current microarray oligonucleotide probe design strategies are based on probe design factors (PDFs), which include probe hybridization free energy (PHFE), probe minimum folding energy (PMFE), dimer score, hairpin score, homology score and complexity score. The impact of these PDFs on probe performance was evaluated using four sets of microarray comparative genome hybridization (aCGH) data, which included two array manufacturing methods and the genomes of two species. Since most of the hybridizing DNA is equimolar in CGH data, such data are ideal for testing the general hybridization properties of almost all candidate oligonucleotides. In all our data sets, PDFs related to probe secondary structure (PMFE, hairpin score and dimer score) are the most significant factors linearly correlated with probe hybridization intensities. PHFE, homology and complexity score are correlating significantly with probe specificities, but in a non-linear fashion. We developed a new PDF, pseudo probe binding energy (PPBE), by iteratively fitting dinucleotide positional weights and dinucleotide stacking energies until the average residue sum of squares for the model was minimized. PPBE showed a better correlation with probe sensitivity and a better specificity than all other PDFs, although training data are required to construct a PPBE model prior to designing new oligonucleotide probes. The physical properties that are measured by PPBE are as yet unknown but include a platform-dependent component. A practical way to use these PDFs for probe design is to set cutoff thresholds to filter out bad quality probes. Programs and correlation parameters from this study are freely available to facilitate the design of DNA microarray oligonucleotide probes.  相似文献   

7.
The ability to immobilize DNA probes onto gold substrates at an optimum surface density is key in the development of a wide range of DNA biosensors. We present a method to accurately control probe DNA surface density by the simultaneous co-immobilization of thiol modified probes and mercaptohexanol. Probe surface density is controlled by the thiol molar ratio in solution, with a linear relationship between thiol molar ratio and probe density spanning (1-9) x10(12)/cm2. The probe surface density per microscopic surface area was determined using chronocoulometry, and a detailed analysis of the method presented. Using this sample preparation method, the effect of probe density and hybridization on the charge transfer resistance with the negatively charged ferri/ferrocyanide redox couple was determined. Above a threshold probe surface density of 2.5 x 10(12)/cm2, electrostatic repulsion from the negatively charged DNA modulates the charge transfer resistance, allowing hybridization to be detected. Below the threshold density no change in charge transfer resistance with probe density or with hybridization occurs. The probe surface density was optimized to obtain the maximum percentage change in charge transfer resistance with hybridization.  相似文献   

8.
A solution hybridization method was developed for detecting genetically engineered microorganisms in environmental samples. The detection method involves recovery of DNA from the microbial community of an environmental sample followed by hybridization in solution with a radiolabeled RNA gene probe. After nuclease digestion of non-hybridized probe RNA, the DNA-RNA hybrids formed in the solution hybridization reaction are separated by sephadex or hydroxyapatite column chromatography and detected by liquid scintillation counting. Using solution hybridization-gene probe detection, as few as 100-1000 target cells per gram sediment sample of a 2,4,5-T-degrading genetically engineered microorganisms could be detected.  相似文献   

9.
A solution hybridization technique was designed to measure RNA abundance in crude cell lysates and at the same time to maximize confidence that signals resulted from true molecular hybridization. Cell lysates were prepared in 5 M guanidine thiocyanate, then RNA molecules in the lysates were hybridized with two probes, a 32P-labeled RNA "label probe" which provided signal and an oligodeoxyribonucleotide "capture probe" containing a poly(dA) tail which provided a mechanism for selective purification. Ternary hybrids were "captured" on oligo(dT)-coated superparamagnetic beads through a readily reversible interaction with the poly(dA) of the capture probe. RNA did not bind to dT beads through poly(A) under the capture conditions used. Hybrids were purified through cycles of capture on and release from dT beads, with each cycle yielding a 100- to 1000-fold reduction in noise (unhybridized label probe) and a 50-90% recovery of signal (hybridized label probe). Noise was driven below detectable limits after three cycles of capture, thereby improving the sensitivity of measuring target RNA. As few as 15,000 target molecules, 15 fg of a 3-kb RNA, was detectable in the equivalent of 2 x 10(6) cells in concentrated cell lysates (10(8) cells/ml). Since hybridization with both probes was required in order to yield a signal, hybridization specificity could be adjusted with either or both probes. The greater specificity and lack of noise increased confidence that the signal was proportional to the amount of RNA of interest.  相似文献   

10.
Human spermatozoa were studied with a nonradioactive in situ hybridization method. Using a chemically modified DNA probe and immunocytochemical reactions for visualization, it was possible to obtain hybridization signals in 31 of 32 semen samples. Positive hybridization reactions, depending on cell accessibility, varied from 40% to over 90% for the different samples. Using a chromosome 1-specific DNA probe, disomy for this chromosome was found in 0.67% of all accessible sperm cells.  相似文献   

11.
Mycoplasma pulmonis was specifically detected by using a 2.3 kilobase pair (kbp) cloned DNA fragment derived from M. pulmonis m 53 as a probe. This probe recognized 2.3-kbp DNA fragments of three M. pulmonis strains in Southern hybridization, while it did not hybridize with the DNA of M. arthritidis or M. neurolyticum. Determination of the sensitivity of the probe by dot hybridization revealed that 10 ng of M. pulmonis DNA was detected by a biotinylated probe and 1 ng of M. pulmonis DNA was detected by a radioactive probe.  相似文献   

12.
We present a framework for detecting probes in oligonucleotide microarrays that may add significant error to measurements in hybridization experiments. Four types of so-called degenerate probe behavior are considered: secondary structure formation, self-dimerization, cross-hybridization, and dimerization. The framework uses a well-established model for computing the free energy of nucleic acid sequence hybridization and a novel method for the detection of patterns in hybridization experiment data. Our primary result is the identification of unique patterns in hybridization experiment data that are shown to correlate with each type of degenerate probe behavior. A support function for identifying degenerate probes from a large set of hybridization experiments is given and some preliminary experimental results are given for the Affymetrix HuGeneFL GeneChip. Finally, we show a strong relationship between the Affymetrix discrimination measure for a probe and the free-energy estimate from theoretical models of hybridization. In particular, probes on the HuGeneFL GeneChip with high free-energy estimates (weak hybridization) have almost always approximately zero discrimination. The framework can be applied to any Affymetrix oligonucleotide array, and the software is made freely available to the community.  相似文献   

13.
Huan B  Van Atta R  Cheng P  Wood ML  Zychlinsky E  Albagli D 《BioTechniques》2000,28(2):254-5, 258-60
In situ hybridization techniques have been an important research tool since first introduced 30 years ago, and more recently clinical applications have been expanding greatly. Still, further improvements in the assay sensitivity and protocols that are amenable to routine clinical use are desired. We use a novel photo-cross-linking technology to irreversibly bind short oligonucleotide probes to the target sequence following a hybridization period. The cross-linking agent is incorporated into the backbone of the probe and is activated to react with pyrimidines in the opposite strand by near-UV (300-370 nm) irradiation. By locking the probe to the target, very stringent wash conditions can be used that would otherwise completely remove probes that are hybridized but not cross-linked to the target. Consequently, the probe-specific signal is maximized, while the background signal is minimized to the greatest extent possible with the stringency of the wash. The use of short, photo-cross-linkable probes presents a new strategy for maximizing the sensitivity of probe hybridization or signal amplification-based in situ techniques.  相似文献   

14.
DNA microarrays have been widely adopted by the scientific community for a variety of applications. To improve the performance of microarrays there is a need for a fundamental understanding of the interplay between the various factors that affect microarray sensitivity and specificity. We use lattice Monte Carlo simulations to study the thermodynamics and kinetics of hybridization of single-stranded target genes in solution with complementary probe DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct and each segment represents a sequence of nucleotides ( approximately 11 nucleotides). Each probe segment interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how the probe length, temperature, or hybridization energy, and the stretch along the target that the probe segments complement, affect the extent of hybridization. For systems containing single probe and single target molecules, we observe that as the probe length increases, the probability of binding all probe segments to the target decreases, implying that the specificity decreases. We observe that probes 12-16 segments ( approximately 132-176 nucleotides) long gave the highest specificity and sensitivity. This agrees with the experimental results obtained by another research group, who found an optimal probe length of 150 nucleotides. As the hybridization energy increases, the longer probes are able to bind all their segments to the target, thus improving their specificity. The hybridization kinetics reveals that the segments at the ends of the probe are most likely to start the hybridization. The segments toward the center of the probe remain bound to the target for a longer time than the segments at the ends of the probe.  相似文献   

15.
Cloned riboprobe for detection of a mycoplasmalike organism   总被引:2,自引:0,他引:2  
A [32P]-labeled single stranded-RNA probe (riboprobe) was constructed with plasmid vector pSP64 and used to detect and specifically identify an uncultured pathogenic mycoplasmalike organism in infected host. The riboprobe was more sensitive and reliable than complementary double stranded-DNA probe in detection of western X mycoplasmalike organism. When concentration of a double stranded-DNA probe was increased, nonspecific hybridization signal was observed with nucleic acid from healthy plants and from plants infected by other mycoplasmalike organisms. In contrast, sensitivity of detection with the complementary riboprobe was increased at elevated probe concentrations without nonspecific hybridization.  相似文献   

16.
Y. Matsuda    H. Toyoda    M. Morita    S. Ikeda    T. Tamai    T. Nishiguchi  S. Ouchi 《Journal of Phytopathology》1994,141(2):133-142
A novel method, a combination of a micro–injection and in situ hybridization cytochemistry, was developed for the examination of gene expression in Erysiphe graminis f. sp. hordei. In view of its high cellular content, hence high probability of hybridization with corresponding probes, cytoplasmic rRNA was chosen as the target and hybridized with a micro–injected photobiotin–labelled nucleic acid probe. The rDNA sequence was isolated from a genomic library of the fungus by the, use of cDNA derived from 28S RNA of Fusarium oxysporum f. sp. lycopersici , and the complementry RNA strand was synthesized in vitro for a probe. Since neither intact nor fixed conidial cells took up FITC–labelled albumin, the photo, biotin–conjugated RNA probe was introduced into cytoplasm of conidiospores by a pricking method. Positive hybridization was visualized by the colour–generating reaction catalyzed by biotinylated enzyme (alkaline phosphatase) which was first bound to the hybridized photobiotinlabelled probe. Specific hybridization was detected in cytoplasm of more than 80% of pricked conidiospores. A similar result was obtained when a probe was introduced into appressoria and haustoria formed on/in barley coleoptile epidermal cells. Hybridization was also observed in these structures when a double–stranded rDNA probe was introduced by pricking.  相似文献   

17.
DNA-DNA colony hybridization experiments with three different synthetic probes were carried out with 210 strains of Staphylococcus aureus. The synthetic probes encoded the amino acids 15 to 29 (probe 1), 179 to 192 (probe 2), and 207 to 219 (probe 3) of staphylococcal enterotoxin B (SEB). The amino acid sequences of these parts of SEB are identical to those of SEC1. All 21 SEB-producing strains tested reacted with each of the three probes. Of the 69 SEC-producing strains, 21 reacted with probe 1, none reacted with probe 2, and all 69 reacted with probe 3. With other strains no hybridization signals were obtained. The results presented here show that with a single synthetic DNA probe (probe 3) both SEB- and SEC-producing strains are detectable.  相似文献   

18.
We have constructed light-up probes for nucleic acid detection. The light-up probe is a peptide nucleic acid (PNA) oligonucleotide to which the asymmetric cyanine dye thiazole orange (TO) is tethered. It combines the excellent hybridization properties of PNA and the large fluorescence enhancement of TO upon binding to DNA. When the PNA hybridizes to target DNA, the dye binds and becomes fluorescent. Free probes have low fluorescence, which may increase almost 50-fold upon hybridization to complementary nucleic acid. This makes the light-up probes particularly suitable for homogeneous hybridization assays, where separation of the bound and free probe is not necessary. We find that the fluorescence enhancement upon hybridization varies among different probes, which is mainly due to variations in free probe fluorescence. For eight probes studied the fluorescence quantum yield at 25 degrees C in the unbound state ranged from 0.0015 to 0.08 and seemed to depend mainly on the PNA sequence. The binding of the light-up probes to target DNA is highly sequence specific and a single mismatch in a 10-mer target sequence was readily identified.  相似文献   

19.
We describe a double in situ hybridization assay for the simultaneous detection of Herpes simplex virus (HSV) and cytomegalovirus (CMV) DNA in infected cell cultures using non-radioactive-labeled probes. This work used a biotinylated HSV DNA probe, which can be revealed by an avidin-biotin-peroxidase complex and a digoxigenin-labeled CMV DNA probe, visualized by anti-digoxigenin F(ab) fragments conjugated with alkaline phosphatase. Light microscopy visualization was achieved by the contrasting colors of appropriate peroxidase and alkaline phosphatase reaction products (red and dark blue, respectively). The time required to perform the double hybridization assay was about 3 hr. This double hybridization assay proved to be sensitive, specific, and provided good resolving power.  相似文献   

20.
Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号