首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strategies for penicillin fermentation in tower-loop reactors   总被引:1,自引:0,他引:1  
Since it has not been possible to produce penicillin in tower-loop reactors with highly viscous filamentous molds of Penicillium chrysogenum which are employed in stirred-tank reactors, a new strategy has been developed to avoid the formation of this morphology and to use the pellet form of the fungi. When employing definite impeller speeds in the subculture in connection with definite inoculum amounts and substrate concentrations in the main culture (bubble column), it is possible to generate a suspension of isolated small pellets, which shows a low broth viscosity up to a sediment content of 45% over the entire fermentation time. Volumetric mass-transfer coefficients k(L)as are by a factor of 4 to 5 higher in these pellet suspensions than in filamentous broths. It was easy to maintain the necessary oxygen supply for penicillin production in these pellet suspensions. Under these conditions the specific penicillin productivities were higher with regard to power input (up to 90%), biomass, and consumed substrate than in the stirred-tank reactors with highly viscous filamentous morphology of the fungi. Under nonoptimized operating conditions the absolute penicillin production in the tower loop was 35% lower than in the stirred-tank reactor due to lower possible biomass concentrations. The separation of the biomass, and therefore the penicillin recovery, is much simpler when employing pellets. It is shown how the particular mass transfer resistances at the gas/liquid and liquid/pellet interfaces and within the pellets change with the pellet diameter. There should be a particular pellet diameter at which penicillin productivity has its maximum. These investigations indicate that the use of tower-loop reactors can, in the future, be an alternative for more economical penicillin production methods.  相似文献   

2.
饮用水微生物的安全快速检测   总被引:2,自引:0,他引:2  
【目的】为了更好地分析饮用水中的微生物含量。【方法】利用流式细胞术(Flowcytometry,FCM)、ATP测定方法检测瓶装无气饮用水中的微生物数量、可同化有机碳(Assimilable organic carbon,AOC)含量以及微生物活性,并将检测结果与传统的饮用水微生物检测技术相对照。【结果】FCM方法可快速区分水样中的活性细菌和非活性细菌,AOC含量反映了水样中微生物再生能力;而ATP检测方法也能比异养细菌平板计数法(Heterotrophic plate count,HPC)更好地反映瓶装无气饮用水中的实际微生物含量。【结论】FCM、ATP测定方法要明显优于依赖于培养的传统方法。  相似文献   

3.
The effects of the chemical composition of water on granular sludge formation and characteristics in a denitrifying upflow sludge-blanket (USB) reactor were studied. Denitrification of drinking water showed different biomass sludge characteristics when the reactor was fed with groundwater as opposed to surface water. USB reactors fed with groundwater produced granules with good settling characteristics, SVI (sludge volume index) values lower than 30 ml/g, and high reactor biomass concentrations (20–25 g/l), while surface-water-fed reactors exhibited lower biomass concentrations (10–15 g/l) due to poor settling characteristics (SVI values of 50–90 ml/g). Sludge granules from the reactor fed with surface water had a low mineral content of between 10% and 20% as compared to a mineral content of 25%–50% in the groundwater reactor. The larger mineral content in the groundwater-fed reactor was due to a greater precipitation potential, i.e. higher concentrations of calcium and alkalinity present in groundwater combined with the release of alkalinity and subsequent increase in pH caused by biological denitrification. Verification for this phenomenon was established by enriching surface water with calcium and alkalinity, which increased the reactor's precipitation potential from 15 mg/1 to 40 mg/1 (as CaCO3). The granules obtained from the reactor fed with enriched surface water had a high mineral content of between 40% and 50% and very low SVI values, contributing to improved granule-settling characteristics and reactor stability.  相似文献   

4.
Zhang S  Li A  Cui D  Yang J  Ma F 《Bioresource technology》2011,102(6):4360-4365
Mycelial pellet of Aspergillus niger Y3 was used as a biomass carrier to immobilize the aniline-degrading bacterium, Acinetobacter calcoaceticus JH-9 and the mix culture of the COD rapid degradation bacteria. In order to investigate its removal effect on aniline and COD, the combined mycelial pellets were applied in the SBR. Comparison of the performances was conducted between another SBR inoculated with sole strain JH-9 and the above SBR. The results showed that the stable degradations of aniline and COD were observed in both reactors. In the SBR with combined mycelial pellet, the biological removal efficiency was about 0.9 mg aniline/(L·d). It was much higher than that in the activated sludge reactor. Meanwhile, the performances of the sedimentation velocity, liquid-solid phase separation and the effluent quality were better in the SBR. According to SEM images and PCR-DGGE analysis, the species immobilized on the biomass carrier were more predominant in this system.  相似文献   

5.
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.  相似文献   

6.
Assimilable organic carbon (AOC) is an important parameter governing the growth of heterotrophic bacteria in drinking water. Despite the recognition that variations in treatment practices (e.g., disinfection, coagulation, selection of filter media, and watershed protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the difficulty of the method. To simplify the method, the Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX test bacteria were mutagenized by using luxCDABE operon fusion and inducible transposons to produce bioluminescent strains. The growth of these strains can easily be monitored with a programmable luminometer to determine the maximum cell yield via luminescence readings, and these values can be fitted to the classical Monod growth curve to determine bacterial growth kinetics and the maximum growth rate. Standard curves using acetate carbon (at concentrations ranging from 0 to 1,000 μg/liter) resulted in coefficients of determination (r2) between luminescence units and acetate carbon levels of 0.95 for P-17 and 0.89 for NOX. The bioluminescence test was used to monitor reclaimed water, in which average AOC levels range between 150 and 1,400 μg/liter acetate carbon equivalents. Comparison of the conventional AOC assay and the bioluminescent assay produced an r2 of 0.92.Biodegradable organic matter is used by heterotrophic bacteria for carbon and energy. Easily biodegradable carbon can lead to high levels of bacterial growth (2, 7, 8). The assimilable organic carbon (AOC) assay offers a standardized measurement of the heterotrophic bacterial growth potential of treated water and was originally developed by van der Kooij (13, 14). van der Kooij''s method utilized two bacterial strains (Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX) chosen for their nutritional requirements. AOC test results are considered to be more an indicator of the biological growth potential of the water and less a direct measurement of biodegradable carbon because the limiting nutrient may not be carbon (10). AOC is an important parameter governing the growth of bacteria in drinking water. AOC levels as low as 10 μg/liter can result in excessive growth of heterotrophic plate count bacteria in the absence of a chlorine residual. Even in the presence of a chlorine residual, AOC levels of >100 μg/liter have been associated with problems related to coliform and mycobacterium regrowth and possible regulatory noncompliance. High organic carbon levels, warm temperatures, and low levels of disinfectant residuals lead to water distribution system problems, including iron pipe corrosion, the growth of opportunistic pathogens (e.g., Mycobacterium avium, Aeromonas hydrophila, and Legionella pneumophila) in distribution system pipe biofilms, and bacterial regrowth in distributed water (9, 11, 13, 15). In distributed water, bacterial regrowth is perhaps the most significant mechanism for water quality deterioration between the treatment plant and the end user.AOC is the fraction of natural organic matter that is most readily used by bacteria for multiplication and is of greatest interest to drinking water utilities. Despite the recognition that variations in treatment practices (e.g., disinfection, coagulation, selection of filter media, and watershed protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the complexity and difficulty of the method. Previous work attempted to simplify the method by measuring ATP instead of determining plate counts (10), but problems with commercial ATP measurement reagents discouraged utility laboratory adoption of this technique (3). The plate count and ATP methods are complex, time-consuming, and cumbersome, requiring a week or more of turnaround time before results are available. The methods are also expensive because of the technical labor involved in assaying ATP levels from filter-concentrated cells or in spread plating samples and determining plate CFU counts. These issues hindered routine determination of AOC levels and, therefore, strategies to optimize treatment for AOC removal. To simplify the method, P-17 and NOX test bacteria were mutagenized with luxCDABE operon fusion and inducible transposons to produce bioluminescent strains (4), but the engineered strains were shown to be marginally effective in low-sensitivity analog luminometers.The present work describes a rapid AOC test that uses the bioluminescent strains in conjunction with a sensitive, photon-counting luminometer. Combining the instrumentation and the bioluminescent derivatives has resulted in an easy-to-use AOC test that has been successfully applied to various water matrices. Standard curves were developed to determine the responses of the bioluminescent strains to various acetate carbon concentrations. Luminescence levels were converted to acetate carbon equivalents (based on standard curves) by using the Monod model, and maximum growth yield values were evaluated and compared. In addition, a yearlong study was conducted to measure the biological stability within reclaimed-water distribution systems from four geographically diverse reclaimed-water facilities that employed a variety of physical, chemical, and biological treatment combinations to treat wastewater effluents. In this study, average AOC levels were 10 times higher than those typically found in drinking water distribution systems and ranged from 150 to 1,400 μg/liter.  相似文献   

7.
A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700?mg COD?l?1. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD?l?1 h?1 at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02?mg ATP g VS?1 versus 0.85?mg ATP g VS?1) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6?mg ATP g VS?1 versus 1.1?mg ATP g VS?1), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system.  相似文献   

8.
Regrowth of micro-organisms in drinking water distribution systems is caused by the utilisation of biodegradable compounds which are either present in treated water or originate from materials in contact with drinking water. In the Netherlands most drinking water is distributed without disinfectant residual and regrowth is limited by achieving biostable drinking water. A combination of methods is used to assess the biostability of drinking water. These methods are: (1) determination of the concentration of easily assimilable organic carbon (AOC); and (2) assessment of the biofilm formation rate (BFR). Assimilated organic carbon concentrations in drinking water in the Netherlands range from a few μg C/l in slow sand filtrates and in ground water supplies to values of ~ 50 μg C/l in supplies using ozonation in water treatment. Biofilm formation rate values were found to range from < 1 pg ATP/cm(2)/d in supplies using anaerobic ground water as the source. Increase of heterotrophic plate counts is limited at AOC values below 10 μg C/l. At BFR values below 10 pg ATP/cm(2)/d the risk of exceeding the guideline value for aeromonads (90 percentile < 200 c.f.u./100 ml) is less than 20%. Calculations based on the decrease of the AOC concentration observed in distributions systems confirm that very low concentrations of AOC can cause considerable biofilm formation on the pipe wall. The methods for assessing the biostability of drinking water combine with the assessment of the Biofilm Formation Potential of materials in contact with drinking water, thus providing a framework, the Unified Biofilm Approach, for evaluating the biostability of drinking water and materials.  相似文献   

9.
Bio-catalytic calcification (BCC) reactors utilise microbial urea hydrolysis by autochthonous bacteria for the precipitation-removal of calcium, as calcite, from industrial wastewater. Due to the limited knowledge available concerning natural ureolytic microbial calcium carbonate (CaCO(3)) precipitation, the microbial ecology of BCC reactors has remained a black box to date. This paper characterises BCC reactor evolution from initialisation to optimisation over a 6-week period. Three key parameters were studied: (1) microbial evolution, (2) the (bio)chemical CaCO(3) precipitation pathway, and (3) crystal nucleation site development. Six weeks were required to establish optimal reactor performance, which coincided with an increase in urease activity from an initial 7 mg urea l(-1) reactor h(-1) to about 100 mg urea l(-1) reactor h(-1). Urease activity in the optimal period was directly proportional to Ca(2+) removal, but urease gene diversity was seemingly limited to a single gene. Denaturing gradient gel electrophoresis of 16S rRNA genes revealed the dynamic evolution of the microbial community structure of the calcareous sludge, which was eventually dominated by a few species including Porphyromonas sp., Arcobacter sp. and Bacteroides sp. Epi-fluorescence and scanning electron microscopy showed that the calcareous sludge was colonised with living bacteria, as well as the calcified remains of organisms. It appears that the precipitation event is localised in a micro-environment, due to colonisation of crystal nucleation sites (calcareous sludge) by the precipitating organisms.  相似文献   

10.
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion. (c) 1993 Wiley & Sons, Inc.  相似文献   

11.
This study has investigated the acclimation of ammonia-oxidizing communities (AOC) to low dissolved oxygen (DO) concentrations. Under controlled laboratory conditions, two sequencing batch reactors seeded with activated sludge from the same source were operated at high DO (near saturation) and low DO (0.1 mg O2/L) concentrations for a period of 220 days. The results demonstrated stable and complete nitrification at low DO conditions after an acclimation period of approximately 140 days. Acclimation brought about increased specific oxygen uptake rates and enhanced expression of a particular heme protein in the soluble fraction of the cells in the low DO reactor as compared to the high DO reactor. The induced protein was determined not to be any of the enzymes or electron carriers present in the conventional account of ammonia oxidation in ammonia-oxidizing bacteria (AOB). Further research is required to determine the specific nature of the heme protein detected; a preliminary assessment suggests either a type of hemoglobin protein or a lesser-known component of the energy-transducing pathways of AOB. The effect of DO on AOC dynamics was evaluated using the 16S rRNA gene as the basis for phylogenetic comparisons and organism quantification. Ammonium consumption by ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria was ruled out by fluorescent in situ hybridization in both reactors. Even though Nitrosomonas europaea was the dominant AOB lineage in both high and low DO sequencing batch reactors at the end of operation, this enrichment could not be linked in the low DO reactor to acclimation to oxygen-limited conditions.  相似文献   

12.
Summary In the last few years, the use of fluidized-bed reactors for biological wastewater treatment has got increasing attention. In 1981, Shieh et al. proposed a model to predict the biomass concentration in a fluidized-bed reactor. From this model one can see that the biofilm density plays a very important role in determining the total biomass hold-up. In this article the influence of the type of carbon source on the biomass concentration, and as a consequence the type of organisms selected, is studied. The growth of a filamentous, budforming bacteria in a reactor treating nitrate rich surface water supplied with methanol as carbon source, results in a biomass concentration only half of the concentration which can normally be obtained in a fluidized-bed reactor treating synthetic wastewater; in this latter case rod-shaped bacteria are enriched which permit a dense packing.  相似文献   

13.
Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.  相似文献   

14.
The assimilable organic carbon (AOC) test is a standardized measure of the bacterial growth potential of treated water. We describe the design and initial development of an AOC assay that uses bioluminescent derivatives of AOC test bacteria. Our assay is based on the observation that bioluminescence peaks at full cell yield just prior to the onset of the stationary phase during growth in a water sample. Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX bacteria were mutagenized with luxCDABE operon fusion and inducible transposons and were selected on minimal medium. Independent mutants were screened for high luminescence activity and predicted AOC assay sensitivity. All mutants tested were able to grow in tap water under AOC assay conditions. Strains P-17 I5 (with p-aminosalicylate inducer) and NOX I3 were chosen for use in the bioluminescence AOC test. Peak bioluminescence and plate count AOC were linearly related for both test bacteria, though data suggest that the P-17 bioluminescence assay requires more consistent luminescence monitoring. Bioluminescence results were obtained 2 or 3 days postinoculation, compared with 5 days for the ATP luminescence AOC assay and 8 days for the plate count assay. Plate count AOC assay results for nonmutant and bioluminescent bacteria from 36 water samples showed insignificant differences, indicating that the luminescent bacteria retained a full range of AOC measurement capability. This bioluminescence method is amenable to automation with a microplate format with programmable reagent injection.  相似文献   

15.
Ma J  Ibekwe AM  Wang H  Xu J  Leddy M  Yang CH  Crowley DE 《PloS one》2012,7(4):e28519
Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 μg l(-1) glucose (equivalent to 0-16.0 mg glucose C kg(-1) soil) with the detection limit of 10 μg l(-1) equivalent to 0.20 mg glucose C kg(-1) soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg(-1). Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils.  相似文献   

16.
The removal of phenol, ortho- (o-) and para- (p-)cresol was studied with two series of UASB reactors using unacclimatized granular sludges bioaugmented with a consortium enriched against these substances. The parameters studied were the amount of inoculum added to the sludges and the method of immobilization of the inoculum. Two methods were used, adsorption to the biomass or encapsulation within calcium alginate beads. In the bioaugmentation by adsorption experiment, and with a 10% inoculum, complete phenol removal was obtained after 36 d, while 178 d were required in the control reactor. For p-cresol, 95% removal was obtained in the bioaugmented reactor on day 48 while 60 d were required to achieve 90% removal in the control reactor. For o-cresol, the removals were only marginally better with the bioaugmented reactors. Tests performed with the reactors biomass under non-limiting substrate concentrations showed that the specific activities of the bioaugmented biomasses were larger than the original biomass for phenol, and p-cresol even after 276 of operations, showing that the inoculum bacteria successfully colonized the sludge granules. Immobilization of the inoculum by encapsulation in calcium alginate beads, was performed with 10% of the inoculum. Results showed that the best activities were obtained when the consortium was encapsulated alone and the beads added to the sludges. This reactor presented excellent activity and the highest removal of the various phenolic compounds a few days after start-up. After 90 d, a high-phenolic compounds removal was still observed, demonstrating the effectiveness of the encapsulation technique for the start-up and maintenance of high-removal activities.  相似文献   

17.
The assimilable organic carbon (AOC) test is a standardized measure of the bacterial growth potential of treated water. We describe the design and initial development of an AOC assay that uses bioluminescent derivatives of AOC test bacteria. Our assay is based on the observation that bioluminescence peaks at full cell yield just prior to the onset of the stationary phase during growth in a water sample. Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX bacteria were mutagenized with luxCDABE operon fusion and inducible transposons and were selected on minimal medium. Independent mutants were screened for high luminescence activity and predicted AOC assay sensitivity. All mutants tested were able to grow in tap water under AOC assay conditions. Strains P-17 I5 (with p-aminosalicylate inducer) and NOX I3 were chosen for use in the bioluminescence AOC test. Peak bioluminescence and plate count AOC were linearly related for both test bacteria, though data suggest that the P-17 bioluminescence assay requires more consistent luminescence monitoring. Bioluminescence results were obtained 2 or 3 days postinoculation, compared with 5 days for the ATP luminescence AOC assay and 8 days for the plate count assay. Plate count AOC assay results for nonmutant and bioluminescent bacteria from 36 water samples showed insignificant differences, indicating that the luminescent bacteria retained a full range of AOC measurement capability. This bioluminescence method is amenable to automation with a microplate format with programmable reagent injection.  相似文献   

18.
In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic micro-organisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield ( Y = cfu/ΔTOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated ; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.  相似文献   

19.
Marble stone powder (calcite tailing) is a residual material resulting from the cutting and polishing of marble stone. Its use as adjuvant for the biologic treatment of acid mine drainage is studied. The performance of a combined chemical/biologic packed bed reactor containing a sulphate-reducing bacteria inoculum and calcite tailing as neutralising agent was compared with the individual neutralisation and biologic steps. Unlike the individual steps, the combined column is efficient in terms of metals and sulphate removal and acidity neutralisation, producing treated water suitable for irrigation. This work emphasizes on the key role played by waste calcite tailing in the inlet of the reactor. By thus adjusting pH to values adequate for sulphate-reducing bacteria water suitable for irrigation can be obtained in a single equipment with low energy demand. This goal would be impossible without the neutralisation action.  相似文献   

20.
The effect of a continuous supply of a water extract of Moringa oleifera seeds (WEMOS) on the hydrolytic microbial population of biomass grown in mesophilic upflow anaerobic sludge blanket reactors treating domestic wastewater was investigated. The WEMOS-treated sludge had seemingly a wider diversity, with enterobacter and klebsiella as dominant hydrolytic bacteria, compared with the control sludge. Additional tests indicated that various hydrolytic bacteria could degrade WEMOS. It appeared that a continuous supply of WEMOS to an anaerobic digester, treating domestic wastewater, increased the diversity of hydrolytic bacteria and therefore enhanced the biological start-up of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号