首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bim, a "BH3-only" protein, is expressed de novo following withdrawal of serum survival factors and promotes cell death. We have shown previously that activation of the ERK1/2 pathway promotes phosphorylation of Bim(EL), targeting it for degradation via the proteasome. However, the nature of the kinase responsible for Bim(EL) phosphorylation remained unclear. We now show that Bim(EL) is phosphorylated on at least three sites in response to activation of the ERK1/2 pathway. By using the peptidylprolyl isomerase, Pin1, as a probe for proline-directed phosphorylation, we show that ERK1/2-dependent phosphorylation of Bim(EL) occurs at (S/T)P motifs. ERK1/2 phosphorylates Bim(EL), but not Bim(S) or Bim(L), in vitro, and mutation of Ser(65) to alanine blocks the phosphorylation of Bim(EL) by ERK1/2 in vitro and in vivo and prevents the degradation of the protein following activation of the ERK1/2 pathway. We also find that ERK1/2, but not JNK, can physically associate with GST-Bim(EL), but not GST-Bim(L) or GST-Bim(S), in vitro. ERK1/2 also binds to full-length Bim(EL) in vivo, and we have localized a potential ERK1/2 "docking domain" lying within a 27-amino acid stretch of the Bim(EL) protein. Our findings provide new insights into the post-translational regulation of Bim(EL) and the role of the ERK1/2 pathway in cell survival signaling.  相似文献   

2.
The BH3-only protein, Bim, exists as three splice variants (Bim(S), Bim(L), and Bim(EL)) of differing pro-apoptotic potency. Bim(EL), the least effective killer, is degraded by the proteasome in response to phosphorylation by extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2-dependent phosphorylation correlates with the presence of a domain unique to the Bim(EL) splice variant that includes the major ERK1/2 phosphorylation site Ser(65). However, efficient phosphorylation by ERK1/2, c-Jun N-terminal kinase, or p38 requires the presence in the substrate of a discrete kinase-docking domain as well as the phosphoacceptor site. Here we show that the region unique to Bim(EL) (amino acids 41-97) harbors two potential DEF-type ERK1/2 kinase-docking domains, DEF1 and DEF2. Peptide competition assays revealed that the DEF2 peptide could act autonomously to bind active ERK1/2, whereas the DEF1 peptide did not. Truncation analysis identified a minimal region, residues 80-97, containing the DEF2 motif as sufficient for ERK1/2 binding. Mutation of key residues in the DEF2 motif abolished the interaction of ERK1/2 and Bim(EL) and also abolished ERK1/2-dependent phosphorylation of Bim(EL) in vivo, thereby stabilizing the protein and enhancing cytotoxicity. Our results identify a new physiologically relevant functional motif in Bim(EL) that may account for the distinct biological properties of this splice variant.  相似文献   

3.
The pro-apoptotic BH3-only protein Bim has a major role in hematopoietic homeostasis, particularly in the lymphocyte compartment, where it strongly affects immune function. The three major Bim isoforms (Bim(EL), Bim(L) and Bim(S)) are generated by alternative splicing. Bim(EL), the most abundant isoform, contains a unique sequence that has been reported to be the target of phosphorylation by several MAP kinases. In particular, Erk1/2 has been shown to interact with Bim(EL) through the DEF2 domain of Bim(EL) and specifically phosphorylate this isoform, thereby targeting it for ubiquitination and proteasomal degradation. To examine the physiological importance of this mechanism of regulation and of the alternative splicing of Bim, we have generated several Bim knock-in mouse strains and analyzed their hematopoietic system. Although mutation in the DEF2 domain reduces Bim(EL) degradation in some circumstances, this mutation did not significantly increase Bim's pro-apoptotic activity in vivo nor impact on the homeostasis of the hematopoietic system. We also show that Bim(EL) and Bim(L) are interchangeable, and that Bim(S) is dispensable for the function of Bim. Hence, we conclude that physiological regulation of Bim relies on mechanisms independent of its alternative splicing or the Erk-dependent phosphorylation of Bim(EL).  相似文献   

4.
Bim, the Bcl-2 interacting mediator of cell death, is a member of the BH3-only family of pro-apoptotic proteins. Recent studies have demonstrated that the apoptotic activity of Bim can be regulated through a post-translational mechanism whereby ERK phosphorylation serves as a signal for Bim ubiquitination and proteasomal degradation. In this report, we investigated the signaling pathways leading to Bim phosphorylation in Ba/F3 cells, an interleukin-3 (IL-3)-dependent B-cell line. IL-3 stimulation induced phosphorylation of Bim(EL), one of the predominant isoforms of Bim expressed in cells, at multiple sites, as evidenced by the formation of at least three to four bands by Western blotting that were sensitive to phosphatase digestion. The appearance of multiple, phosphorylated species of Bim(EL) correlated with Akt, and not ERK, activation. The PI3K inhibitor, LY294002, blocked IL-3-stimulated Akt activity and partially blocked Bim(EL) phosphorylation. In vitro kinase assays showed that recombinant Akt could directly phosphorylate a GST-Bim(EL) fusion protein and identified the Akt phosphorylation site in the Bim(EL) domain as Ser(87). Further, we demonstrated that cytokine stimulation promotes Bim(EL) binding to 14-3-3 proteins. Finally, we show that mutation of Ser(87) dramatically increases the apoptotic potency of Bim(EL). We propose that Ser(87) of Bim(EL) is an important regulatory site that is targeted by Akt to attenuate the pro-apoptotic function of Bim(EL), thereby promoting cell survival.  相似文献   

5.
6.
The stress-activated c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein (MAP) kinase (p38) regulate apoptosis induced by several forms of cellular insults. Potential targets for these kinases include members of the Bcl-2 family proteins, which mediate apoptosis generated through the mitochondria-initiated, intrinsic cell death pathway. Indeed, the activities of several Bcl-2 family proteins, both pro- and anti-apoptotic, are controlled by JNK phosphorylation. For example, the pro-apoptotic activity of Bim(EL), a member of the Bcl-2 family, is stimulated by JNK phosphorylation at Ser-65. In contrast, there is no reported evidence that p38-induced apoptosis is due to direct phosphorylation of Bcl-2 family proteins. Here we report evidence that sodium arsenite-induced apoptosis in PC12 cells may be due to direct phosphorylation of Bim(EL) at Ser-65 by p38. This conclusion is supported by data showing that ectopic expression of a wild type, but not a non-phosphorylatable S65A mutant of Bim(EL), potentiates sodium arsenite-induced apoptosis and by experiments showing direct phosphorylation of Bim(EL) at Ser-65 by p38 in vitro. Furthermore, sodium arsenite induced Bim(EL) phosphorylation at Ser-65, which was blocked by p38 inhibition. This study provides the first example whereby p38 induces apoptosis by phosphorylating a member of the Bcl-2 family and illustrates that phosphorylation of Bim(EL) on Ser-65 may be a common regulatory point for cell death induced by both JNK and p38 pathways.  相似文献   

7.
Since the signal transduction mechanisms responsible for liver regeneration mediated by the plasminogen/plasmin system remain largely undetermined, we have investigated whether plasmin regulates the pro-apoptotic protein Bim(EL) in primary hepatocytes. Plasmin bound to hepatocytes in part via its lysine binding sites (LBS). Plasmin also triggered phosphorylation of ERK1/2 without cell detachment. The plasmin-induced phosphorylation of ERK1/2 was inhibited by the LBS inhibitor epsilon-aminocaproic acid (EACA), the serine protease inhibitor aprotinin, and the MEK inhibitor PD98059. DFP-inactivated plasmin failed to phosphorylate ERK1/2. Plasmin temporally decreased the starvation-induced expression of Bim(EL) and activation of caspase-3 via the ERK1/2 signaling pathway, resulting in an enhancement of cell survival. The amount of mRNA for Bim increased 1 day after the injection of CCl(4) in livers of plasminogen knockout (Plg-KO) and the wild-type (WT) mice. The increase in Bim(EL) protein persisted for at least 7 days post-injection in livers of Plg-KO mice, whereas WT mice showed an increase in Bim(EL) protein 1 day after the injection. Plg-KO and WT mice showed notable phosphorylation of ERK1/2 7 and 3 days after the injection of CCl(4), respectively. Our data suggest that the plasminogen/plasmin system could decrease Bim(EL) expression via the ERK1/2 signaling pathway during liver regeneration.  相似文献   

8.
9.
The proapoptotic protein Bim is expressed de novo following withdrawal of serum survival factors. Here, we show that Bim-/- fibroblasts and epithelial cells exhibit reduced cell death following serum withdrawal in comparison with their wild-type counterparts. In viable cells, Bax associates with Bcl-2, Bcl-x(L) and Mcl-1. Upon serum withdrawal, newly expressed Bim(EL) associates with Bcl-x(L) and Mcl-1, coinciding with the dissociation of Bax from these proteins. Survival factors can prevent association of Bim with pro-survival proteins by preventing Bim expression. However, we now show that even preformed Bim(EL)/Mcl-1 and Bim(EL)/Bcl-x(L) complexes can be rapidly dissociated following activation of ERK1/2 by survival factors. The dissociation of Bim from Mcl-1 is specific for Bim(EL) and requires ERK1/2-dependent phosphorylation of Bim(EL) at Ser(65). Finally, ERK1/2-dependent dissociation of Bim(EL) from Mcl-1 and Bcl-x(L) may play a role in regulating Bim(EL) degradation, since mutations in the Bim(EL) BH3 domain that disrupt binding to Mcl-1 cause increased turnover of Bim(EL). These results provide new insights into the role of Bim in cell death and its regulation by the ERK1/2 survival pathway.  相似文献   

10.
11.
Regulation of the heart by the sympathetic nervous system, fundamental to the physiological response to stress and exercise, requires coordinated phosphorylation of multiple downstream molecular targets, including the I(Ks) (slowly activating potassium current) channel. Sympathetic nervous system stimulation increases intracellular cAMP for which targeted regulation is directed in large part by distinct scaffold or anchoring proteins. Yotiao is an A-kinase-anchoring protein (AKAP) that recruits the cyclic AMP-dependent protein kinase (protein kinase A (PKA)) and protein phosphatase 1 to the carboxyl terminus of the I(Ks) channel to form a molecular complex and control its phosphorylation state, crucial to the cardiac cellular response to sympathetic nervous system stimulation. Here we report that Yotiao itself is a substrate for PKA phosphorylation, and we identify a Yotiao amino-terminal (N-T) residue (Ser-43) that is PKA-phosphorylated in response to beta-adrenergic receptor stimulation. The replacement of Ser-43 by Ala ablates the PKA phosphorylation of N-T Yotiao and markedly diminishes the functional response of the wild type and pseudo-phosphorylated I(Ks) channel to cAMP but neither prevents the PKA phosphorylation of KCNQ1 nor its binding to Yotiao. These results suggest, for the first time, a critical role for the PKA phosphorylation of an AKAP in the functional regulation of an ion channel protein and postphosphorylation allosteric modulation of the I(Ks) channel by Yotiao.  相似文献   

12.
13.
14.
Programmed cell death is well established as a key factor in the development of the vertebrate nervous system of which the retina is a unique sensory component. However, it is of utmost importance for the survival of post-mitotic tissues such as the retina that the execution of the cell death program is kept under stringent control once development is complete. This is exemplified by the many retinal dystrophies where aberrant apoptosis results in loss of distinct cell layers in the mature retina and often culminates in blindness. In this study, we report that the extracellular signal-regulated kinase (ERK1/2) pathway plays a key role in the regulation of apoptosis during retinal development. We show that as the retina matures, the emphasis shifts towards survival and ERK1/2 is activated resulting in phosphorylation of the potent BH3-only protein Bim(EL) and a dramatic decline in Bim(EL) expression via proteasomal degradation. We find that activation of ERK1/2 also occurs in response to injury in retinal explants. However, this is a transient response and appears to be overcome by Jun N-terminal kinase activation resulting in induction of Bim(EL) mRNA and photoreceptor apoptosis. Our findings provide new insights into the intracellular pathways responsible for regulating apoptosis during neuronal development and degeneration.  相似文献   

15.
The survival motor neuron (SMN) protein plays an essential role in the assembly of uridine-rich small nuclear ribonuclear protein complexes. Phosphorylation of SMN can regulate its function, stability, and sub-cellular localization. This study shows that protein kinase A (PKA) phosphorylates SMN both in vitro and in vivo. Bioinformatic analysis predicts 12 potential PKA phosphorylation sites in human SMN. Mass spectrometric analysis of a tryptic digest of SMN after PKA phosphorylation identified five distinct phosphorylation sites in SMN (serines 4, 5, 8, 187 and threonine 85). Mutagenesis of this subset of PKA-phosphorylated sites in SMN affects association of SMN with Gemin2 and Gemin8. This result indicates that phosphorylation of SMN by PKA may play a role in regulation of the in vivo function of SMN.  相似文献   

16.
Several recent studies have shown that Ca2+/calmodulin-dependent protein kinase I (CaMKI) is phosphorylated and activated by a protein kinase (CaMKK) that is itself subject to regulation by Ca2+/calmodulin. In the present study, we demonstrate that this enzyme cascade is regulated by cAMP-mediated activation of cAMP-dependent protein kinase (PKA). In vitro, CaMKK is phosphorylated by PKA and this is associated with inhibition of enzyme activity. The major site of phosphorylation is threonine 108, although additional sites are phosphorylated with lower efficiency. In vitro, CaMKK is also phosphorylated by CaMKI at the same sites as PKA, suggesting that this regulatory phosphorylation might play a role as a negative-feedback mechanism. In intact PC12 cells, activation of PKA with forskolin resulted in a rapid inhibition of both CaMKK and CaMKI activity. In hippocampal slices CaMKK was phosphorylated under basal conditions, and activation of PKA led to an increase in phosphorylation. Two-dimensional phosphopeptide mapping indicated that activation of PKA led to increased phosphorylation of multiple sites including threonine 108. These results indicate that in vitro and in intact cells the CaMKK/CaMKI cascade is subject to inhibition by PKA-mediated phosphorylation of CaMKK. The phosphorylation and inhibition of CaMKK by PKA is likely to be involved in modulating the balance between cAMP- and Ca2+-dependent signal transduction pathways.  相似文献   

17.
Acetylcholine receptor (AChR) from Torpedo electric organ in its membrane-bound or solubilized form is phosphorylated by the Ca2+/phospholipid-dependent protein kinase (PKC). The subunit specificity for PKC is different from that observed for cAMP-dependent protein kinase (PKA). Whereas PKC phosphorylates predominantly the delta subunit and the phosphorylation of the gamma subunit by this enzyme is very low, PKA phosphorylates both subunits to a similar high extent. We have extended our phosphorylation studies to a synthetic peptide from the gamma subunit, corresponding to residues 346-359, which contains a consensus PKA phosphorylation site. This synthetic peptide is phosphorylated by both PKA and PKC, suggesting that in the intact receptor both kinases may phosphorylate the gamma subunit at a similar site, as has been previously demonstrated by us for the delta subunit [Safran, A., et al. (1987) J. Biol. Chem. 262, 10506-10510]. The diverse pattern of phosphorylation of AChR by PKA and PKC may play a role in the regulation of its function.  相似文献   

18.
The carbamoyl phosphate synthetase domain of the multifunctional protein CAD catalyzes the initial, rate-limiting step in mammalian de novo pyrimidine biosynthesis. In addition to allosteric regulation by the inhibitor UTP and the activator PRPP, the carbamoyl phosphate synthetase activity is controlled by mitogen-activated protein kinase (MAPK)- and protein kinase A (PKA)-mediated phosphorylation. MAPK phosphorylation, both in vivo and in vitro, increases sensitivity to PRPP and decreases sensitivity to the inhibitor UTP, whereas PKA phosphorylation reduces the response to both allosteric effectors. To elucidate the factors responsible for growth state-dependent regulation of pyrimidine biosynthesis, the activity of the de novo pyrimidine pathway, the MAPK and PKA activities, the phosphorylation state, and the allosteric regulation of CAD were measured as a function of growth state. As cells entered the exponential growth phase, there was an 8-fold increase in pyrimidine biosynthesis that was accompanied by a 40-fold increase in MAPK activity and a 4-fold increase in CAD threonine phosphorylation. PRPP activation increased to 21-fold, and UTP became a modest activator. These changes were reversed when the cultures approach confluence and growth ceases. Moreover, CAD phosphoserine, a measure of PKA phosphorylation, increased 2-fold in confluent cells. These results are consistent with the activation of CAD by MAPK during periods of rapid growth and its down-regulation in confluent cells associated with decreased MAPK phosphorylation and a concomitant increase in PKA phosphorylation. A scheme is proposed that could account for growth-dependent regulation of pyrimidine biosynthesis based on the sequential action of MAPK and PKA on the carbamoyl phosphate synthetase activity of CAD.  相似文献   

19.
Transglutaminase 2 (TG2, tissue transglutaminase) is a multifunctional protein involved in cross-linking a variety of proteins, including retinoblastoma protein (Rb). Here we show that Rb is also a substrate for the recently identified serine/threonine kinase activity of TG2 and that TG2 phosphorylates Rb at the critically important Ser780 residue. Furthermore, phosphorylation of Rb by TG2 destabilizes the Rb.E2F1 complex. TG2 phosphorylation of Rb was abrogated by high Ca2+ concentrations, whereas TG2 transamidating activity was inhibited by ATP. TG2 was itself phosphorylated by protein kinase A (PKA). Phosphorylation of TG2 by PKA attenuated its transamidating activity and enhanced its kinase activity. Activation of PKA in mouse embryonic fibroblasts (MEF) with dibutyryl-cAMP enhanced phosphorylation of both TG2 and Rb by a process that was inhibited by the PKA inhibitor H89. Treatment with dibutyryl-cAMP enhanced Rb phosphorylation in MEFtg2+/+ cells but not in MEFtg2-/- cells. These data indicate that Rb is a substrate for TG2 kinase activity and suggest that phosphorylation of Rb, which results from activation of PKA in fibroblasts, is indirect and requires TG2 kinase activity.  相似文献   

20.
The protein kinase found in the short region of alphaherpesviruses, termed US3 in herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) and ORF66 in varicella-zoster virus (VZV), affects several viral and host cell processes, and its specific targets remain an area of active investigation. Reports suggesting that HSV-1 US3 substrates overlap with those of cellular protein kinase A (PKA) prompted the use of an antibody specific for phosphorylated PKA substrates to identify US3/ORF66 targets. HSV-1, VZV, and PRV induced very different substrate profiles that were US3/ORF66 kinase dependent. The predominant VZV-phosphorylated 125-kDa species was identified as matrin 3, one of the major nuclear matrix proteins. Matrin 3 was also phosphorylated by HSV-1 and PRV in a US3 kinase-dependent manner and by VZV ORF66 kinase at a novel residue (KRRRT150EE). Since VZV-directed T150 phosphorylation was not blocked by PKA inhibitors and was not induced by PKA activation, and since PKA predominantly targeted matrin 3 S188, it was concluded that phosphorylation by VZV was PKA independent. However, purified VZV ORF66 kinase did not phosphorylate matrin 3 in vitro, suggesting that additional cellular factors were required. In VZV-infected cells in the absence of the ORF66 kinase, matrin 3 displayed intranuclear changes, while matrin 3 showed a pronounced cytoplasmic distribution in late-stage cells infected with US3-negative HSV-1 or PRV. This work identifies phosphorylation of the nuclear matrix protein matrin 3 as a new conserved target of this kinase group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号