首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks formed by cytoskeletal elements to specific sites on the cell surface where they dock with a multiprotein structure called the exocyst before fusing with the plasma membrane. The budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the mechanisms involved and their control. Cortical markers, provided by bud site selection pathways during budding, the septin ring during cytokinesis or the stimulation of the pheromone response receptors during mating, act through upstream signalling pathways to localise Cdc24p, the GEF for the rho family GTPase, Cdc42p. In its GTP-bound form, Cdc42p activates a multiprotein complex called the polarisome which nucleates actin cables along which the secretory vesicles are transported to the cell surface. Hyphae can elongate at a rate orders of magnitude faster than the extension of a yeast bud, so understanding hyphal growth will require substantial modification of the yeast paradigm. The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located just behind the growing tip and which is rich in secretory vesicles. It is thought that secretory vesicles are delivered to the apical region where they accumulate in the Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre, and it has been postulated that vesicles exit the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater concentration of vesicles per unit area than subapical regions. There are no obvious equivalents to the bud site selection pathway to provide a spatial landmark for polarised growth in hyphae. However, an emerging model is the way that the site of polarised growth in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the polarisome and the mechanisms that promote its formation are key questions that form the focus of current research.  相似文献   

2.
《Experimental mycology》1995,19(2):153-159
Bartnicki-Garcia, S. Bartnicki, D. D., Gierz, G., López-Franco, R., and Bracker, C. E. 1995. Evidence that Spitzenkörper behavior determines the shape of a fungal hypha; A test of the hyphoid model. Experimental Mycology 19, 153-159. Hyphae of the fungus Rhizoctonia solani have a characteristic Spitzenkörper in their growing tips and a cell shape described by the mathematical hyphoid equation. A mild disturbance of hyphae growing in a slide culture chamber on a microscope stage caused the Spitzenkörper to move away from its usual position next to the apical pole and wander briefly inside the apical dome. Hyphal elongation rate declined abruptly, and the apex became rounded and increased in diameter. As the Spitzenkörper migrated back to its polar position, rapid cell elongation resumed, and the contour of the growing hyphal tip returned to the typical hyphoid shape. The brief dislocation of the Spitzenkörper left a permanent bulge in the hyphal profile. This morphogenetic sequence was mimicked by computer simulation, based on the hyphoid equation which relates the generation of hyphal shape to the linear displacement of a vesicle supply center (VSC). The VSC was programmed to retrace the observed movements of the Spitzenkörper during the above sequence. The resulting similarity of shape between real and computer-simulated cells reinforces the mathematical prediction that the Spitzenkörper acts as a VSC and that its continuous linear advancement generates a typical hyphal tube with the characteristic hyphoid shape. Accordingly, the hyphoid model and its VSC concept provide a plausible hypothesis to explain the cellular basis of polarized growth of fungal hyphae.  相似文献   

3.
Polarized growth is a fundamental property of cell growth and development. It requires the delivery of post‐Golgi secretory vesicles to the site of polarized growth. This process is mediated by Rab GTPases activated by their guanine exchange factors (GEFs). The human fungal pathogen, Candida albicans, can grow in a budded yeast form or in a highly polarized hyphal form, and thus provides a model to study this phenomenon. During hyphal, but not yeast growth, secretory vesicles accumulate in an apical body called a Spitzenkörper, which acts to focus delivery of the vesicles to the tip. Post‐Golgi transport of secretory vesicles is mediated by the Rab GTPase Sec4, activated by its GEF Sec2. Using a combination of deletion mapping, in vitro mutagenesis, an analogue‐sensitive allele of Cdc28 and an in vitro kinase assay, we show that localization of Sec2 to the Spitzenkörper and normal hyphal development requires phosphorylation of Serine 584 by the cyclin‐dependent kinase Cdc28. Thus, as well as controlling passage through the cell cycle, Cdc28 has an important function in controlling polarized secretion.  相似文献   

4.
Endocytosis and exocytosis are strictly segregated at the ends of hyphal cells of filamentous fungi, with a collar of endocytic activity encircling the growing cell tip, which elongates through directed membrane fusion. It has been proposed that this separation supports an endocytic recycling pathway that maintains polar localization of proteins at the growing apex. In a search for proteins in the filamentous fungus Aspergillus nidulans that possess an NPFxD motif, which signals for endocytosis, a Type 4 P‐Type ATPase was identified and named DnfA. Interestingly, NPFxD is at a different region of DnfA than the same motif in the Saccharomyces cerevisiae ortholog, although endocytosis is dependent on this motif for both proteins. DnfA is involved in asexual sporulation and polarized growth. Additionally, it is segregated within the Spitzenkörper from another Type 4 P‐type ATPase, DnfB. Next, the phosphatidylserine marker GFP::Lact‐C2 was expressed in growing hyphae, which revealed that this phospholipid is enriched on the cytosolic face of secretory vesicles. This distribution is affected by deleting either dnfA or dnfB. These findings provide evidence for the spatial and temporal segregation of Type4‐ATPases in filamentous fungi, and the asymmetric distribution of phosphatidylserine to the Spitzenkörper in A. nidulans.  相似文献   

5.
Video-enhanced light microscopy of the apical and subapical regions of growing hyphae of several fungal species revealed the existence of momentary synchronized motions of subcellular organelles. First discovered in a temperature-sensitive morphological mutant (ramosa-1) of Aspergillus niger, these seemingly spontaneous cytoplasmic contractions were also detected in wild-type hyphae of A. niger, Neurospora crassa, and Trichoderma atroviride. Cytoplasmic contractions in all fungi lasted about 1 s. Although the cytoplasm recovered its motility and appearance, the contraction usually led to drastic changes in Spitzenkörper (apical body) behavior and hyphal morphology, often both. Within 10 s after the contraction, the Spitzenkörper commonly became dislodged from its polar position; sometimes it disassembled into phase-dark and phase-light components; more commonly, it disappeared completely. Whether partial or complete, the dislocation of the Spitzenkörper was always accompanied by a sharp reduction or cessation of growth, and was usually followed by marked morphological changes that included bulbous hyphal tips, bulges in the hyphal profile, and formation of subapical and apical branches. The cytoplasmic contractions are vivid evidence that the most conspicuous cell organelles (membrane-bound) in living hyphae are interconnected via a contractile cytoskeletal network.  相似文献   

6.
Growing hyphae of Rhizoctonia solani were stained with the endocytic marker dye FM4-64 and imaged by confocal microscopy. Staining of the plasma membrane was followed by labeling of organelles in the cytoplasm (after ~1 min) and of the Spitzenkörper (Spk; after ~2 min). Fluorescence recovery after photobleaching (FRAP) of the stained Spk demonstrated the vectorial flow of secretory vesicles from the apical cytoplasm to the Spk. This flux was modelled in a two-compartment model. The turnover time of the vesicles of the Spk was estimated to be 1.3–2.5 min. These results are roughly consistent with the expected flux of vesicles through the Spk based on the number of secretory vesicles within the Spk and the number of secretory vesicles that would be necessary to fuse with the apical plasma membrane to maintain hyphal extension rates. These results suggest that membrane retrieval via endocytosis is not as significant as previously suggested.  相似文献   

7.
GS‐1 (ncu04189) is a protein required for the synthesis of β‐1,3‐glucan in Neurospora crassa. As chitin, β‐1,3‐glucan is a morphogenetically relevant component of the fungal cell wall. Previously, we showed that chitin synthases are delivered to the growing hyphal tip of N. crassa by secretory microvesicles that follow an unconventional route and accumulate in the core of the Spitzenkörper (Spk). Tagged with the green fluorescent protein (GFP), GS‐1 accumulated in the hyphal apex forming a dynamic and pleomorphic ring‐like structure (‘Spitzenring’) that corresponded to the Spk outer macrovesicular stratum and surrounded the inner core of chitin synthase‐containing microvesicles. TIRF microscopy revealed that GS‐1‐GFP reached the hyphal apex as a population of heterogeneous‐size particles that moved along defined paths. On sucrose density gradients, GS‐1‐associated particles mainly sedimented in a high density range 1.1272–1.2124 g ml?1. Clearly, GS‐1 and chitin synthases of N. crassa are contained in two different types of secretory vesicles that accumulate in different strata of the Spk, a differentiation presumably related to the spatial control of cell‐wall synthesis.  相似文献   

8.
Candida albicans is an opportunistic fungal pathogen that colonises the skin as well as genital and intestinal mucosa of most healthy individuals. The ability of Calbicans to switch between different morphological states, for example, from an ellipsoid yeast form to a highly polarised, hyphal form, contributes to its success as a pathogen. In highly polarised tip‐growing cells such as neurons, pollen tubes, and filamentous fungi, delivery of membrane and cargo to the filament apex is achieved by long‐range delivery of secretory vesicles tethered to motors moving along cytoskeletal cables that extend towards the growing tip. To investigate whether such a mechanism is also critical for Calbicans filamentous growth, we studied the dynamics and organisation of the Calbicans secretory pathway using live cell imaging and three‐dimensional electron microscopy. We demonstrate that the secretory pathway is organised in distinct domains, including endoplasmic reticulum membrane sheets that extend along the length of the hyphal filament, a sub‐apical zone exhibiting distinct membrane structures and dynamics and a Spitzenkörper comprised of uniformly sized secretory vesicles. Our results indicate that the organisation of the secretory pathway in Calbicans likely facilitates short‐range “on‐site” secretory vesicle delivery, in contrast to filamentous fungi and many highly polarised cells.  相似文献   

9.
Geotrichum candidum is unusual among reported hyphal ascomycetes in that its hyphae readily stain with phalloidin to reveal actin concentrated in the Spitzenk?rper (SPK) and plaques associated with the plasma membrane (PM). Loss of SPK actin, but not the PM plaques, following latrunculin B treatment produces tip swelling, consistent with actin restraining tip morphology or localizing vesicle exocytosis. Tip morphogenesis may also involve a spectrin-like protein which concentrates at the apical PM in plaques unassociated with the actin plaques. Branch formation occurs with growth rates initially about 20% those of leading tips, and does not involve a morphologically detectable SPK, nor SPK-like actin ensembles, indicating the dispensibility of this structure in tip growth. Surprisingly, new tubular tips can form in the continued presence of latrunculin, consistent with alternative cellular systems, such as the spectrin-like protein, substituting for actin's critical functions.  相似文献   

10.
Properly folded proteins destined for secretion exit through a specific subdomain of the endoplasmic reticulum (ER) known as transitional ER (tER) sites or ER exit sites (ERES). While such proteins in filamentous fungi localize at the hyphal tips overlapping the Spitzenk?rper, the distribution of misfolded proteins remains unknown. In the present study, we analyzed the distribution of mutant protein as well as ER and tER sites visualized by expression of AoClxA and AoSec13 fused with fluorescent protein, respectively, in the filamentous fungus Aspergillus oryzae. Discrete tER subdomains were visualized as the punctate dots of AoSec13 overlapping or associated with AoClxA distribution. Both ER and tER sites were concentrated near hyphal tips and formed apical gradients. Interestingly, while the expression of wild-type α-amylase fusion protein (AmyB-mDsRed) showed its localization coinciding with the Spitzenk?rper, a disulfide bond-deletion in AmyB causing its misfolding resulted in its accumulation in the subapical and basal ER, creating a reciprocal gradient to the tER sites. Furthermore, the reciprocal gradient enabled a clear distinction between the tER sites and the mutant AmyB accumulation sites near the apex. Based on these findings, we conclude that A. oryzae accumulates aberrant proteins toward basal hyphae while maintaining polarized tER sites for secretion of properly folded proteins at the hyphal tip.  相似文献   

11.
12.
The process of hyphal fusion (anastomosis) in growing colonies of Neurospora crassa, stained with the membrane-selective dyes FM1-43 and FM4-64, was visualized by confocal microscopy. Time-lapse, live-cell imaging illustrated the dynamics of hyphal growth and anastomosis during its pre-contact, contact and post-contact, and post-fusion stages. Fusion-competent hyphae were morphologically distinct and exhibited remote sensing, resulting in branch initiation and/or re-direction of growth to facilitate contact between participating hyphae. A stained Spitzenk?rper was often observed where fusion-competent hyphae met. It is suggested that this structure contains secretory vesicles responsible for the delivery of cell adhesion molecules at the point of contact, cell wall synthesizing enzymes for the swelling growth of fused hyphal tips, and digestive enzymes required for fusion pore formation. Dramatic changes in cytoplasmic flow frequently occurred between the participating hyphae following fusion. After anastomosis has taken place, septa commonly formed close to the fusion site. The live-cell imaging reported here has clearly shown the complexity of the hyphal homing and fusion process. The control and consequences of repeated anastomoses within a mycelium must be as complex as the process itself.  相似文献   

13.
Spatially segregated SNARE protein interactions in living fungal cells   总被引:1,自引:0,他引:1  
The machinery for trafficking proteins through the secretory pathway is well conserved in eukaryotes, from fungi to mammals. We describe the isolation of the snc1, sso1, and sso2 genes encoding exocytic SNARE proteins from the filamentous fungus Trichoderma reesei. The localization and interactions of the T. reesei SNARE proteins were studied with advanced fluorescence imaging methods. The SSOI and SNCI proteins co-localized in sterol-independent clusters on the plasma membrane in subapical but not apical hyphal regions. The vesicle SNARE SNCI also localized to the apical vesicle cluster within the Spitzenk?rper of the growing hyphal tips. Using fluorescence lifetime imaging microscopy and Foerster resonance energy transfer analysis, we quantified the interactions between these proteins with high spatial resolution in living cells. Our data showed that the site of ternary SNARE complex formation between SNCI and SSOI or SSOII, respectively, is spatially segregated. SNARE complex formation could be detected between SNCI and SSOI in subapical hyphal compartments along the plasma membrane, but surprisingly, not in growing hyphal tips, previously thought to be the main site of exocytosis. In contrast, SNCI.SSOII complexes were found exclusively in growing apical hyphal compartments. These findings demonstrate spatially distinct sites of plasma membrane SNARE complex formation in fungi and the existence of multiple exocytic SNAREs, which are functionally and spatially segregated. This is the first demonstration of spatially regulated SNARE interactions within the same membrane.  相似文献   

14.
Optical tweezers have been little used in experimental studies on filamentous fungi. We have built a simple, compact, easy-to-use, safe and robust optical tweezer system that can be used with brightfield, phase contrast, differential interference contrast and fluorescence optics on a standard research grade light microscope. We have used this optical tweezer system in a range of cell biology applications to trap and micromanipulate whole fungal cells, organelles within cells, and beads. We have demonstrated how optical tweezers can be used to: unambiguously determine whether hyphae are actively homing towards each other; move the Spitzenkörper and change the pattern of hyphal morphogenesis; make piconewton force measurements; mechanically stimulate hyphal tips; and deliver chemicals to localized regions of hyphae. Significant novel experimental findings from our study were that germ tubes generated significantly smaller growth forces than leading hyphae, and that both hyphal types exhibited growth responses to mechanical stimulation with optically trapped polystyrene beads. Germinated spores that had been optically trapped for 25 min exhibited no deleterious effects with regard to conidial anastomosis tube growth, homing or fusion.  相似文献   

15.
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in Moryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.  相似文献   

16.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

17.
The Golgi apparatus performs crucial functions in the sorting and processing of proteins destined for secretion from eukaryotic cells. In filamentous fungi, organization of the Golgi apparatus reflects the unique challenges brought about by the highly polarized nature of hyphal growth. Recent results show that Golgi compartments are spatially segregated within hyphal tip cells in a manner that depends upon the integrity of the cytoskeleton. Moreover, loss of normal Golgi organization stops polarized hyphal extension and triggers de‐polarization of the hyphal tip. These results emphasize the point that a spatially organized and dynamic Golgi apparatus represents an adaptation that is as important for hyphal extension as is the presence of a Spitzenkörper. In addition, they also identify regulatory mechanisms that could enable controlled de‐polarization of hyphae during development or infection‐related morphogenesis.  相似文献   

18.
Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane–associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.  相似文献   

19.
Calmodulin (CaM) is a small, eukaryotic protein that reversibly binds Ca2+. Study of CaM localization in genetically tractable organisms has yielded many insights into CaM function. Here, we described the dynamic localization of Aspergillus nidulans CaM (AnCaM) in live-cells by using recombination strains with homologous, single cross-over insertions at the target gene which placed the GFP fused copy under the inducible alcA promoter and the RFP–CaM integration under the native cam promoter. We found that the localization of CaM fusion was quite dynamic throughout the hypha and was concentrated to the active growing sites during germination, hyphal growth, cytokinesis and conidiation. The depletion of CaM by alcA promoter repression induced the explicit abnormalities of germlings with the swollen germ tubes. In addition, the position of highly concentrated GFP–CaM in the extreme apex seemed to determine the hyphal orientation. These data collectively suggest that CaM is constantly required for new hyphal growth. In contrast to this constant accumulation at the apex, GFP–CaM was only transiently localized at septum sites during cytokinesis. Notably, depletion of CaM caused the defect of septation with a completely blocked septum formation indicating that the transient CaM accumulation at the septum site is essential for septation. Moreover, the normal localization of CaM at a hyphal tip required the presence of the functional actin cytoskeleton and the motor protein KipA, which is indispensable for positioning Spitzenkörper. This is the first report of CaM localization and function in live-cells by the site-specific homologous integration in filamentous fungi.  相似文献   

20.
The classical model of secretory vesicle recycling after exocytosis involves the retrieval of membrane (the omega figure) at a different site. An alternative model involves secretory vesicles transiently fusing with the plasma membrane (the 'kiss and run' mechanism) [1,2]. No continuous observation of the fate of a single secretory vesicle after exocytosis has been made to date. To study the dynamics of fusion immediately following exocytosis of insulin-containing vesicles, enhanced green fluorescent protein (EGFP) fused to the vesicle membrane protein phogrin [3] was delivered to the secretory vesicle membrane of INS-1 beta-cells using an adenoviral vector. The behaviour of the vesicle membrane during single exocytotic events was then examined using evanescent wave microscopy [4-6]. In unstimulated cells, secretory vesicles showed only slow Brownian movement. After a depolarizing pulse, most vesicles showed a small decrease in phogrin-EGFP fluorescence, and some moved laterally over the plasma membrane for approximately 1 microm. In contrast, secretory vesicles loaded with acridine orange all showed a transient (33-100 ms) increase in fluorescence intensity followed by rapid disappearance. Simultaneous observations of phogrin-EGFP and acridine orange indicated that the decrease in EGFP fluorescence occurred at the time of the acridine orange release, and that the lateral movement of EGFP-expressing vesicles occurred after this. Post-exocytotic retrieval of the vesicle membrane in INS-1 cells is thus slow, and can involve the movement of empty vesicles under the plasma membrane ('kiss and glide').  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号