首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wild animals not normally exposed to antimicrobial agents can acquire antimicrobial agent-resistant bacteria through contact with humans and domestic animals and through the environment. In this study we assessed the frequency of antimicrobial resistance in generic Escherichia coli isolates from wild small mammals (mice, voles, and shrews) and the effect of their habitat (farm or natural area) on antimicrobial resistance. Additionally, we compared the types and frequency of antimicrobial resistance in E. coli isolates from swine on the same farms from which wild small mammals were collected. Animals residing in the vicinity of farms were five times more likely to carry E. coli isolates with tetracycline resistance determinants than animals living in natural areas; resistance to tetracycline was also the most frequently observed resistance in isolates recovered from swine (83%). Our results suggest that E. coli isolates from wild small mammals living on farms have higher rates of resistance and are more frequently multiresistant than E. coli isolates from environments, such as natural areas, that are less impacted by human and agricultural activities. No Salmonella isolates were recovered from any of the wild small mammal feces. This study suggests that close proximity to food animal agriculture increases the likelihood that E. coli isolates from wild animals are resistant to some antimicrobials, possibly due to exposure to resistant E. coli isolates from livestock, to the resistance genes of these isolates, or to antimicrobials through contact with animal feed.  相似文献   

2.
In Mekong Delta farms (Vietnam), antimicrobials are extensively used, but limited data are available on levels of antimicrobial resistance (AMR) among Escherichia coli isolates. We performed a structured survey of AMR in E. coli isolates (n = 434) from 90 pig, chicken, and duck farms. The results were compared with AMR among E. coli isolates (n = 234) from 66 small wild animals (rats and shrews) trapped on farms and in forests and rice fields. The isolates were susceptibility tested against eight antimicrobials. E. coli isolates from farmed animals were resistant to a median of 4 (interquartile range [IQR], 3 to 6) antimicrobials versus 1 (IQR, 1 to 2) among wild mammal isolates (P < 0.001). The prevalences of AMR among farmed species isolates (versus wild animals) were as follows: tetracycline, 84.7% (versus 25.6%); ampicillin, 78.9% (versus 85.9%); trimethoprim-sulfamethoxazole, 52.1% (versus 18.8%); chloramphenicol, 39.9% (versus 22.5%); amoxicillin-clavulanic acid, 36.6% (versus 34.5%); and ciprofloxacin, 24.9% (versus 7.3%). The prevalence of multidrug resistance (MDR) (resistance against three or more antimicrobial classes) among pig isolates was 86.7% compared to 66.9 to 72.7% among poultry isolates. After adjusting for host species, MDR was ∼8 times greater among isolates from wild mammals trapped on farms than among those trapped in forests/rice fields (P < 0.001). Isolates were assigned to unique profiles representing their combinations of susceptibility results. Multivariable analysis of variance indicated that AMR profiles from wild mammals trapped on farms and those from domestic animals were more alike (R2 range, 0.14 to 0.30) than E. coli isolates from domestic animals and mammals trapped in the wild (R2 range, 0.25 to 0.45). The results strongly suggest that AMR on farms is a key driver of environmental AMR in the Mekong Delta.  相似文献   

3.
Antimicrobial resistance is a global threat to livestock, human and environmental health. Although resistant bacteria have been detected in wildlife, their role in the epidemiology of antimicrobial resistance is not clear. Our objective was to investigate demographic, temporal and climatic factors associated with carriage of antimicrobial resistant Escherichia coli in raccoons and the environment. We collected samples from raccoon paws and feces and from soil, manure pit and dumpsters on five swine farms and five conservation areas in Ontario, Canada once every five weeks from May to November, 2011–2013 and tested them for E. coli and susceptibility to 15 antimicrobials. Of samples testing positive for E. coli, resistance to ≥ 1 antimicrobials was detected in 7.4% (77/1044; 95% CI, 5.9–9.1) of raccoon fecal samples, 6.3% (23/365; 95% CI, 4.0–9.3) of paw samples, 9.6% (121/1260; 8.0–11.4) of soil samples, 57.4% (31/54; 95% CI, 43.2–70.8) of manure pit samples, and 13.8% (4/29; 95% CI, 3.9–31.7) of dumpster samples. Using univariable logistic regression, there was no significant difference in the occurrence of resistant E. coli in raccoon feces on conservation areas versus farms; however, E. coli isolates resistant to ≥ 1 antimicrobials were significantly less likely to be detected from raccoon paw samples on swine farms than conservation areas and significantly more likely to be detected in soil samples from swine farms than conservation areas. Resistant phenotypes and genotypes that were absent from the swine farm environment were detected in raccoons from conservation areas, suggesting that conservation areas and swine farms may have different exposures to resistant bacteria. However, the similar resistance patterns and genes in E. coli from raccoon fecal and environmental samples from the same location types suggest that resistant bacteria may be exchanged between raccoons and their environment.  相似文献   

4.
Salmonella enterica subsp. enterica serovar Newport resistant to the extended-spectrum cephalosporins (ESCs) and other antimicrobials causes septicemic salmonellosis in humans and animals and is increasingly isolated from humans, animals, foods, and environmental sources. Mechanisms whereby serovar Newport bacteria become resistant to ESCs and other classes of antimicrobials while inhabiting the intestinal tract are not well understood. The present study shows that 25.3% of serovar Newport strains isolated from the turkey poult intestinal tract after the animals were dosed with Escherichia coli harboring a large conjugative plasmid encoding the CMY-2 beta-lactamase and other drug resistance determinants acquired the plasmid and its associated drug resistance genes. The conjugative plasmid containing the cmy-2 gene was transferred not only from the donor E. coli to Salmonella serovar Newport but also to another E. coli serotype present in the intestinal tract. Laboratory studies showed that the plasmid could be readily transferred between serovar Newport and E. coli intestinal isolates. Administration of a single dose of ceftiofur, used to prevent septicemic colibacillosis, to 1-day-old turkeys did not result in the isolation of ceftiofur-resistant E. coli or Salmonella serovar Newport. There was a remarkable association between serotype, drug resistance, and plasmid profile among the E. coli strains isolated from the poults. This study shows that Salmonella serovar Newport can become resistant to ESCs and other antibiotics by acquiring a conjugative drug resistance plasmid from E. coli in the intestines.  相似文献   

5.
A total of 361 Escherichia coli O157 isolates, recovered from humans, cattle, swine, and food during the years 1985 to 2000, were examined to better understand the prevalence of antimicrobial resistance among these organisms. Based on broth microdilution results, 220 (61%) of the isolates were susceptible to all 13 antimicrobials tested. Ninety-nine (27%) of the isolates, however, were resistant to tetracycline, 93 (26%) were resistant to sulfamethoxazole, 61 (17%) were resistant to cephalothin, and 48 (13%) were resistant to ampicillin. Highest frequencies of resistance occurred among swine isolates (n = 70), where 52 (74%) were resistant to sulfamethoxazole, 50 (71%) were resistant to tetracycline, 38 (54%) were resistant to cephalothin, and 17 (24%) were resistant to ampicillin. Based on the presence of Shiga toxin genes as determined by PCR, 210 (58%) of the isolates were identified as Shiga toxin-producing E. coli (STEC). Among these, resistance was generally low, yet 21 (10%) were resistant to sulfamethoxazole and 19 (9%) were resistant to tetracycline. Based on latex agglutination, 189 (52%) of the isolates were identified as E. coli O157:H7, among which 19 (10%) were resistant to sulfamethoxazole and 16 (8%) were resistant to tetracycline. The data suggest that selection pressure imposed by the use of tetracycline derivatives, sulfa drugs, cephalosporins, and penicillins, whether therapeutically in human and veterinary medicine or as prophylaxis in the animal production environment, is a key driving force in the selection of antimicrobial resistance in STEC and non-STEC O157.  相似文献   

6.
7.
A recent study of beta-hemolytic Escherichia coli isolated from diarrheic swine found that 53% were resistant to chloramphenicol, a drug that has been prohibited from use in food animals in the US since the mid-1980s. To identify the factors governing the persistence of chloramphenicol resistance in the absence of specific selection pressure, the location of the chloramphenicol resistance gene cmlA and its linkage to other resistance determinants were investigated. Southern blot analysis of plasmid DNA from 46 swine E. coli isolates indicated that cmlA was present on large plasmids greater than 100 kbp. Fifty-two percent of the isolates were able to transfer chloramphenicol resistance to an E. coli recipient at conjugation frequencies ranging from 10(-3) to 10(-8) per recipient. Antimicrobial susceptibility tests on transconjugant strains demonstrated that resistance to sulfamethoxazole, tetracycline, and kanamycin frequently transferred along with chloramphenicol resistance. The transconjugant strains possessed at least two distinct class 1 integrons that linked cmlA to both aminoglycoside resistance genes aadA1 and aadA2 and either to sul1 or to sul3 sulphonamide resistance genes. These results suggest that in the absence of specific chloramphenicol selection pressure, the cmlA gene is maintained by virtue of gene linkage to genes encoding resistance to antimicrobials that are currently approved for use in food animals.  相似文献   

8.
The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant.  相似文献   

9.
The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies ( Pica pica ) and rabbits ( Oryctolagus cuniculus ) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique.  相似文献   

10.
Five-hundred fifty-five (555) isolates of Escherichia coli were obtained from fecal specimens of a representative number of animals from five farms in the United States. Antibiotic exposure of the selected herds was determined by an epidemiological survey of these farms. The incidence of multiple resistance in the E. coli isolates was higher in herds exposed to continuous feeding of antimicrobial agents (84.8%) than in a herd not receiving antimicrobials (15.7%). The most common resistance configuration observed was the triple pattern of dihydrostreptomycin (DS), sulfonamide (SU), and tetracycline (TE). The second most frequent pattern consisted of four resistances: ampicillin (AM), DS, SU, and TE. The frequency of transfer factors was much higher in multiply resistant organisms from the herds exposed to antimicrobial medicaments. The E. coli isolates were relatively efficient in fostering and transferring heterologous resistance factors. AM resistance factors occurred more frequently in herds which were exposed to feed levels of penicillin (27.9%) than in those that were not (6.4%).  相似文献   

11.
The incidence of antimicrobial resistance and expressed and unexpressed resistance genes among commensal Escherichia coli isolated from healthy farm animals at slaughter in Great Britain was investigated. The prevalence of antimicrobial resistance among the isolates varied according to the animal species; of 836 isolates from cattle tested only 5.7% were resistant to one or more antimicrobials, while only 3.0% of 836 isolates from sheep were resistant to one or more agents. However, 92.1% of 2480 isolates from pigs were resistant to at least one antimicrobial. Among isolates from pigs, resistance to some antimicrobials such as tetracycline (78.7%), sulphonamide (66.9%) and streptomycin (37.5%) was found to be common, but relatively rare to other agents such as amikacin (0.1%), ceftazidime (0.1%) and coamoxiclav (0.2%). The isolates had a diverse range of resistance gene profiles, with tet(B), sul2 and strAB identified most frequently. Seven out of 615 isolates investigated carried unexpressed resistance genes. One trimethoprim-susceptible isolate carried a complete dfrA17 gene but lacked a promoter for it. However, in the remaining six streptomycin-susceptible isolates, one of which carried strAB while the others carried aadA, no mutations or deletions in gene or promoter sequences were identified to account for susceptibility. The data indicate that antimicrobial resistance in E. coli of animal origin is due to a broad range of acquired genes.  相似文献   

12.
The number and proportion of CTX-M positive Escherichia coli organisms were determined in feces from cattle, chickens, and pigs in the United Kingdom to provide a better understanding of the risk of the dissemination of extended-spectrum β-lactamase (ESBL) bacteria to humans from food animal sources. Samples of bovine (n = 35) and swine (n = 20) feces were collected from farms, and chicken cecal contents (n = 32) were collected from abattoirs. There was wide variation in the number of CTX-M-positive E. coli organisms detected; the median (range) CFU/g were 100 (100 × 10(6) to 1 × 10(6)), 5,350 (100 × 10(6) to 3.1 × 10(6)), and 2,800 (100 × 10(5) to 4.7 × 10(5)) for cattle, chickens, and pigs, respectively. The percentages of E. coli isolates that were CTX-M positive also varied widely; median (range) values were 0.013% (0.001 to 1%) for cattle, 0.0197% (0.00001 to 28.18%) for chickens, and 0.121% (0.0002 to 5.88%) for pigs. The proportion of animals designated high-density shedders (≥1 × 10(4) CFU/g) of CTX-M E. coli was 3/35, 15/32, and 8/20 for cattle, chickens, and pigs, respectively. We postulate that high levels of CTX-M E. coli in feces facilitate the dissemination of bla(CTX-M) genes during the rearing of animals for food, and that the absolute numbers of CTX-M bacteria should be given greater consideration in epidemiological studies when assessing the risks of food-borne transmission.  相似文献   

13.
The prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from bovine feces were compared between organic and conventional dairy herds. Thirty organic dairy herds, where antimicrobials are rarely used for calves and never used for cows, were compared with 30 neighboring conventional dairy farms, where antimicrobials were routinely used for animals for all ages. Fecal specimens from 10 cows and 10 calves on 120 farm visits yielded 332 Campylobacter isolates. The prevalence of Campylobacter spp. in organic and conventional farms was 26.7 and 29.1%, and the prevalence was not statistically different between the two types of farms. Campylobacter prevalence was significantly higher in March than in September, higher in calves than in cows, and higher in smaller farms than in large farms. The rates of retained placenta, pneumonia, mastitis, and abortion were associated with the proportion of Campylobacter isolation from fecal samples. The gradient disk diffusion MIC method (Etest) was used for testing susceptibility to four antimicrobial agents: ciprofloxacin, gentamicin, erythromycin, and tetracycline. Two isolates were resistant to ciprofloxacin, and none of isolates was resistant to gentamicin or erythromycin. Resistance to tetracycline was 45% (148 of 332 isolates). Tetracycline resistance was found more frequently in calves than in cows (P = 0.042), but no difference was observed between organic and conventional farms. When we used Campylobacter spp. as indicator bacteria, we saw no evidence that restriction of antimicrobial use on dairy farms was associated with prevalence of resistance to ciprofloxacin, gentamicin, erythromycin, and tetracycline.  相似文献   

14.
Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50)=1 mug mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n=113) with florfenicol MICs>/=32 mug mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs=32 mug mL(-1) and one with MIC=64 mug mL(-1) were negative for the floR gene.  相似文献   

15.
The prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from bovine feces were compared between organic and conventional dairy herds. Thirty organic dairy herds, where antimicrobials are rarely used for calves and never used for cows, were compared with 30 neighboring conventional dairy farms, where antimicrobials were routinely used for animals for all ages. Fecal specimens from 10 cows and 10 calves on 120 farm visits yielded 332 Campylobacter isolates. The prevalence of Campylobacter spp. in organic and conventional farms was 26.7 and 29.1%, and the prevalence was not statistically different between the two types of farms. Campylobacter prevalence was significantly higher in March than in September, higher in calves than in cows, and higher in smaller farms than in large farms. The rates of retained placenta, pneumonia, mastitis, and abortion were associated with the proportion of Campylobacter isolation from fecal samples. The gradient disk diffusion MIC method (Etest) was used for testing susceptibility to four antimicrobial agents: ciprofloxacin, gentamicin, erythromycin, and tetracycline. Two isolates were resistant to ciprofloxacin, and none of isolates was resistant to gentamicin or erythromycin. Resistance to tetracycline was 45% (148 of 332 isolates). Tetracycline resistance was found more frequently in calves than in cows (P = 0.042), but no difference was observed between organic and conventional farms. When we used Campylobacter spp. as indicator bacteria, we saw no evidence that restriction of antimicrobial use on dairy farms was associated with prevalence of resistance to ciprofloxacin, gentamicin, erythromycin, and tetracycline.  相似文献   

16.
Surveys for Mycobacterium avium subsp. paratuberculosis infection in free-ranging mammals and birds were conducted on nine dairy and beef cattle farms in Wisconsin and Georgia. Specimens were collected from 774 animals representing 25 mammalian and 22 avian species. Specimens of ileum, liver, intestinal lymph nodes, and feces were harvested from the larger mammals; a liver specimen and the gastrointestinal tract were harvested from birds and small mammals. Cultures were performed by using radiometric culture and acid-fast isolates were identified by 16S/IS900/IS1311 PCR and mycobactin dependency characteristics. M. avium subsp. paratuberculosis was cultured from tissues and feces from 39 samples from 30 animals representing nine mammalian and three avian species. The prevalence of infected wild animals by premises ranged from 2.7 to 8.3% in Wisconsin and from 0 to 6.0% in Georgia. Shedding was documented in seven (0.9%) animals: three raccoons, two armadillos, one opossum, and one feral cat. The use of two highly polymorphic short sequence repeat loci for analysis of 29 of the 39 strains identified 10 alleles. One allelic pattern broadly shared in domestic ruminants ("7,5") appeared in approximately one-third of the wildlife M. avium subsp. paratuberculosis isolates studied. Given the few cases of shedding by free-ranging animals compared to the volume of contaminated manure produced by infected domestic ruminant livestock, contamination of the farm environment by infected wildlife was negligible. Wildlife may, however, have epidemiological significance for farms where M. avium subsp. paratuberculosis recently has been eliminated or on farms free of M. avium subsp. paratuberculosis but located in the geographic vicinity of farms with infected livestock.  相似文献   

17.
The incidence of Campylobacter jejuni and Campylobacter coli in wild and producing animals has been studied to evaluate their importance as potential reservoirs of campylobacter infection. These organisms were isolated from: 59 chicken (60.2%), 65 swine (59.1%), 31 black rats (57.4%), 61 sparrows (45.5%), 21 ducks (40.5%), 32 cows (19.5%) and 27 sheep (15.3%). Biotypes, plasmid and resistance profiles were studied in order to characterize the isolates. Biotypes I and II of C. jejuni were predominant in all reservoirs except swine, where C. coli I was more frequent. Plasmid prevalence was higher in strains isolated from swine (53.8%) and rats (45.5%). The size of the plasmids ranged from 1.3 to 82 MDa. A 2.3 MDa plasmid was the most frequent, detected in all the reservoirs except ducks. Antimicrobial susceptibility testing revealed that 5.5% of the strains were resistant to ampicillin, 5.5% to tetracycline, 12.6% to erythromycin and 23.5% to streptomycin. Resistance to erythromycin (26.2%) and to streptomycin (58.4%) was particularly high in isolates from swine. Tetracycline resistance was encoded by a 33 or a 41 MDa plasmid and transferred by conjugation.  相似文献   

18.
The incidence of Campylobacter jejuni and Campylobacter coli in wild and producing animals has been studied to evaluate their importance as potential reservoirs of campylobacter infection. These organisms were isolated from: 59 chicken (60.2%), 65 swine (59.1%), 31 black rats (57.4%), 61 sparrows (45.5%), 21 ducks (40.5%), 32 cows (19.5%) and 27 sheep (15.3%). Biotypes, plasmid and resistance profiles were studied in order to characterize the isolates. Biotypes I and II of C. jejuni were predominant in all reservoirs except swine, where C. coli I was more frequent. Plasmid prevalence was higher in strains isolated from swine (53.8%) and rats (45.5%). The size of the plasmids ranged from 1.3 to 82 MDa. A 2.3 MDa plasmid was the most frequent, detected in all the reservoirs except ducks. Antimicrobial susceptibility testing revealed that 5.5% of the strains were resistant to ampicillin, 5.5% to tetracycline, 12.6% to erythromycin and 23.5% to streptomycin. Resistance to erythromycin (26.2%) and to streptomycin (58.4%) was particularly high in isolates from swine. Tetracycline resistance was encoded by a 33 or a 41 MDa plasmid and transferred by conjugation.  相似文献   

19.
Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.  相似文献   

20.
AIMS: To characterize antibiotic resistant Escherichia coli and Salmonella isolates in rooks wintering in the Czech Republic. METHODS AND RESULTS: Three hundred and sixty-three faeces samples from rooks were examined for antibiotic resistant Escherichia coli and Salmonella. Altogether 13.7%E. coli isolates were resistant to antimicrobial agents tested. The dominant type of resistance was to tetracycline. Resistant E. coli isolates were examined for antibiotic resistance genes and class 1 integrons. Five of 29 antibiotic resistant isolates possessed the int1 gene. Nine Salmonella isolates (2.5%) were found in rook faeces. All the isolates belonged to serotype Salmonella enterica serovar Enteritidis phage type PT8 and PT23. CONCLUSIONS: The study suggests that rooks can be infected by antibiotic resistant E. coli and Salmonella isolates, probably reflecting the presence of such isolates in their sources of food and/or water in the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Rooks can serve as reservoirs and vectors of antibiotic resistant E. coli and Salmonella isolates and potentially transmit these isolates over long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号