首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagocytosis by fish cells has mostly been studied using adherent leucocytes, excluding suspended cells such as the majority of B-cells and neutrophils, but a recent study describes professional phagocytosis of latex beads and bacteria by B-cells from rainbow trout. In the present study, phagocytosis by B-cells and neutrophils from salmon and cod was studied. Leucocytes were isolated from peripheral blood (PBL) and head kidney (HKL). By flow cytometry analyses, proportions of MAb labelled cell populations with internalized fluorescent beads, as well as the number of beads within each cell, could be determined. Phagocytic capacity and ability were demonstrated in B-cells and neutrophils from salmon and cod. In salmon, B-cells had higher phagocytic ability than neutrophils in HKL, but not in PBL. For cod the phagocytic ability of B-cells were lower than for neutrophils in both HKL and PBL, but the phagocytic capacity of cod B-cells were higher than for neutrophils in both HKL and PBL. For salmon B-cells the phagocytic capacity was lower than or similar to neutrophils in HKL and PBL. The total phagocytic ability of leucocytes was different in the species studied. The highest phagocytic ability was observed in cod, showing similar values for PBL and HKL. Salmon PBL displayed about twice the phagocytic ability of cod PBL. There seemed to be some major differences between the two fish species concerning phagocytosis. In salmon, a rather large proportion of phagocytic leucocytes were phagocytic B-cells, indicating that B-cells may have an important function in particle clearance in this species. In cod, phagocytic leucocytes in HKL and PBL were mostly neutrophils, and only a small proportion of B-cells were phagocytic, supporting the more prominent role of innate immune functions in cod neutrophils.  相似文献   

2.
Phagocytosis by catfish neutrophils   总被引:1,自引:0,他引:1  
Channel catfish peripheral blood leucocytes were separated on a Percoll gradient to establish the phagocytic function of the neutrophils. Four fractions of leucocytes were formed on the Percoll gradient, including a fraction that contained 50–80% neutrophils at a density of 1.08–1.09 g ml−1 and a fraction that contained 10% monocytes at a density of 1.071–1.074 g ml−1. Phagocytic assays, using 3H-uridine, showed that the two fractions had similar phagocytic indices, although neutrophils were less phagocytic than monocytes. Neutrophils were confirmed to be phagocytic when examined with transmission electron microscopy. Staining with 3,3-diaminobenzidine-tetrahydrochloride demonstrated peroxidase-positive granules in the cytoplasm of actively phagocytic cells as well as peroxidase reaction products in a number of phagosomes containing bacteria. Phagocytosis of bacteria by channel catfish neutrophils was further confirmed by differential staining of external bacteria and cell surfaces with ruthenium red during the fixation process.  相似文献   

3.
In this paper we optimize a flow cytometric method for evaluating the phagocytic activity of leucocytes in gilthead seabream (Sparus aurata L.) and characterize the phagocytic cells observed. Optimal conditions were established for the fluorescein-labelling and analysis of the bacterium Vibrio anguillarum by flow cytometry. Head-kidney leucocytes were incubated with the heat-killed fluorescein isothiocyanate (FITC)-labelled bacteria for different periods, during which the kinetics of phagocytosis was studied. Attached and interiorized bacteria were distinguished. Although phagocytic ability reached a maximum after 60 min, phagocytic capacity reached its maximum at 20 min. The amount of ingested bacteria per phagocyte was estimated from the mean fluorescence of the leucocytes. Cytochalasin B or colchicine was used to inhibit phagocytosis. Monocyte-macrophages and acidophilic granulocytes showed phagocytic activity as demonstrated by transmission electron microscopy. In conclusion, the technique presented allows the screening of thousands of cells, and individual cell evaluation, by quantifying interiorized particles in fish phagocytes. Our ultrastructural results demonstrate that V. anguillarum is actively phagocytized by seabream macrophages and acidophilic granulocytes.  相似文献   

4.
Barel M  Meibom K  Charbit A 《PloS one》2010,5(12):e14193

Background

Francisella tularensis is a highly virulent facultative intracellular bacterium, disseminating in vivo mainly within host mononuclear phagocytes. After entry into macrophages, F. tularensis initially resides in a phagosomal compartment, whose maturation is then arrested. Bacteria escape rapidly into the cytoplasm, where they replicate freely. We recently demonstrated that nucleolin, an eukaryotic protein able to traffic from the nucleus to the cell surface, acted as a surface receptor for F. tularensis LVS on human monocyte-like THP-1 cells.

Methodology/Principal Findings

Here, we followed the fate of nucleolin once F. tularensis has been endocytosed. We first confirmed by siRNA silencing experiments that expression of nucleolin protein was essential for binding of LVS on human macrophage-type THP-1 cells. We then showed that nucleolin co-localized with intracellular bacteria in the phagosomal compartment. Strikingly, in that compartment, nucleolin also co-localized with LAMP-1, a late endosomal marker. Co-immunoprecipation assays further demonstrated an interaction of nucleolin with LAMP-1. Co-localization of nucleolin with LVS was no longer detectable at 24 h when bacteria were multiplying in the cytoplasm. In contrast, with an iglC mutant of LVS, which remains trapped into the phagosomal compartment, or with inert particles, nucleolin/bacteria co-localization remained almost constant.

Conclusions/Significance

We herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages.  相似文献   

5.
In order to identify the phagocytic cells of sea bass, the peritoneal leucocyte population of fish injected intraperitoneally with Photobacterium damselae subspecies piscicida was studied by light microscopy using cytocentrifuge preparations stained by the Antonow technique for peroxidase detection. Among the leucocytes present in the peritoneal exudate of the infected fish (macrophages, neutrophils, eosinophilic granular cells, lymphocytes and thrombocytes), macrophages and neutrophils were the only phagocytic cells. Neutrophils were easily distinguished from macrophages in Antonow stained preparations by the pattern of peroxidase positivity. Using ultrastructural cytochemistry, neutrophils were found to have abundant cytoplasmic granules positive for peroxidase and arylsulphatase and were negative for alpha-naphthyl butyrate (ANB) esterase. In contrast, ANB esterase activity was detected in macrophages. These leucocytes were typically negative for peroxidase, but ocasionally, some macrophages with peroxidase or arylsulphatase-positive vacuoles were observed. Both phagocytes had cytoplasmic granules positive for acid phosphatase. Glycogen particles were found in the cytoplasm of the two phagocytic cells, but they were much more abundant in neutrophils. Macrophages were much more abundant than neutrophils in the peritoneal cavity of non-injected sea bass but early after the intraperitoneal injection of bacteria, the number of neutrophils increased quickly and extensively. Higher numbers of intraperitoneally injected bacteria were found inside macrophages as compared to neutrophils because macrophages strongly predominated in the peritoneal population at the time of injection. However, when the bacteria were injected into peritoneal cavities with high numbers of neutrophils (attracted by a previous injection of 12% casein), the percentage of neutrophils with phagocytosed bacteria increased, approaching that of infected macrophages. Taken together, these results show that in sea bass, as in many other organisms, in addition to macrophages, neutrophils are important phagocytic cells, the relative participation of each of the two phagocytes in defense mechanisms against infection depending on the opportunity to encounter the invading infectious agents.  相似文献   

6.
The facultative intracellular bacterium Francisella noatunensis causes francisellosis in Atlantic cod (Gadus morhua), but little is known about its survival strategies or how these bacteria evade the host immune response. In this study we show intracellular localisation of F. noatunensis in cod macrophages using indirect immunofluorescence techniques and green fluorescent labelled bacteria. Transmission electron microscopy revealed that F. noatunensis was enclosed by a phagosomal membrane during the initial phase of infection. Bacteria were at a later stage of the infection found in large electron-lucent zones, apparently surrounded by a partially intact or disintegrated membrane. Immune electron microscopy demonstrated the release of bacterial derived vesicles from intracellular F. noatunensis, an event suspected of promoting phagosomal membrane degradation and allowing escape of the bacteria to cytoplasm. Studies of macrophages infected with F. noatunensis demonstrated a weak activation of the inflammatory response genes as measured by increased expression of the Interleukin (IL)-1β and IL-8. In comparison, a stronger induction of gene expression was found for the anti-inflammatory IL-10 indicating that the bacterium exhibits a role in down-regulating the inflammatory response. Expression of the p40 subunit of IL-12/IL-17 genes was highly induced during infection suggesting that F. noatunensis promotes T cell polarisation. The host macrophage responses studied here showed low ability to distinguish between live and inactivated bacteria, although other types of responses could be of importance for such discriminations. The immunoreactivity of F. noatunensis lipopolysaccharide (LPS) was very modest, in contrast to the strong capacity of Escherichia coli LPS to induce inflammatory responsive genes. These results suggest that F. noatunensis virulence mechanisms cover many strategies for intracellular survival in cod macrophages.  相似文献   

7.
Invasion and survival strategies of Anaplasma phagocytophilum   总被引:4,自引:4,他引:0  
Anaplasma phagocytophilum is an aetiological agent of human granulocytic ehrlichiosis, an emerging tick‐borne zoonosis in the United States and Europe. This obligate intracellular bacterium is unique in that it colonizes polymorphonuclear leucocytes (neutrophils). Neutrophils are key players in innate immunity. These short‐lived phagocytes ingest invading microorganisms and destroy them by various means, which include fusing the bacteria‐containing phagosome with acidic lysosomes as well as directing toxic oxidative and proteolytic compounds into the phagosomal lumen. Its tropism for neutrophils indicates that A. phagocytophilum uses strategies for evading and/or neutralizing these microbicidal activities. This review focuses on some of the mechanisms that A. phagocytophilum uses for neutrophil adhesion, surviving within the hostile intracellular environment of its host neutrophil and for effectively disseminating to naïve host cells.  相似文献   

8.
《Journal of molecular biology》2019,431(21):4321-4344
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome–lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.  相似文献   

9.
Previous studies have shown that fibronectin (Fn) enhances phagocytosis and killing of antibody-coated bacteria by neutrophils and macrophages. In an attempt to understand the mechanism of this enhancement, we have investigated the effects of Fn on phagocytosis-related actin organization as well as respiratory burst activity in neutrophils, monocytes and culture-derived macrophages. Employing an NBD-phallacidin flow cytometric analysis of filamentous actin formation, we found that Fn promotes rapid actin polymerization within 30 seconds in neutrophils, monocytes, and macrophages, but not lymphocytes. Enhancement of actin polymerization by Fn was concentration-dependent and mediated by a pertussis toxin- but not cholera toxin- sensitive G protein. Inhibition of protein kinase C by sphingosine (20 μM), calcium influx by verapamil (0.1 mM), or intracellular calcium mobilization by 8-(N, N-diethyl-amino) octyl-3,4,5-trimethoxybenzoate HCI (TMB-8; 0.1 mM) did not block Fn-enhanced actin polymerization in phagocytes. Incubation of neutrophils and macrophages on microtiter plates precoated with Fn suppressed superoxide (O2?) production induced by IgG- and IgA- opsonized group B streptococci. In contrast, Fn significantly enhanced IgA- and IgG-mediated O2? production by freshly isolated monocytes. These data suggest that Fn enhances phagocytosis, presumably through G protein-coupled cytoskeleton reorganization and augments O2? production by circulating monocytes. In contrast, it appears to suppress O2? production by the active phagocytic cells, neutrophils and macrophages. This may result in enhanced phagocytosis and intracellular killing of microorganisms without damaging interstitial tissues. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Listeria monocytogenes is a facultative intracellular pathogen that infects a large diversity of host cells, including macrophages. To avoid the phagosome microbicidal environment, L. monocytogenes secretes a pore-forming toxin (listeriolysin O, LLO) that releases the bacterium into the cytoplasm. We hypothesized that the α-defensins (HNPs) and/or humanized θ-defensin (RC-1) peptides produced by human and non-human primate neutrophils, respectively, cooperate with macrophages to control L. monocytogenes infection. Our results establish that HNP-1 and RC-1 enable macrophages to control L. monocytogenes intracellular growth by inhibiting phagosomal escape, as a consequence, bacteria remain trapped in a LAMP-1-positive phagosome. Importantly, HNP-1 interaction with macrophages and RC-1 interaction with bacteria are required to prevent macrophage infection. In accordance with these results, RC-1 is a more potent anti-listerial peptide than HNP-1 and HNP-1 is acquired by macrophages and trafficked to the phagocytosed bacteria. Finally, HNP-1 and RC-1 antimicrobial activity is complemented by their ability to prevent LLO function through two mechanisms, blocking LLO-dependent perforation of macrophage membranes and the release of LLO from the bacteria. In conclusion, at the site of infection the cooperation between antimicrobial peptides, such as HNP-1, and macrophages likely plays a critical role in the innate immune defence against L. monocytogenes.  相似文献   

11.
CXCL8, a CXC-type chemokine, plays a crucial role in acute inflammation by recruiting and mediating neutrophils and other cells. In this study, the cDNA and genomic DNA sequence of a CXCL8-like protein (PaCXCL8l) from ayu (Plecoglossus altivelis) was determined. Sequence analysis showed that PaCXCL8l represented the typical structure of animal CXCL8s. Phylogenetic tree analysis indicated that PaCXCL8l was closest to CXCL8 of Atlantic cod (Gadus morhua). Constitutive expression of PaCXCL8l was detected in all tested tissues and monocytes/macrophages, and its expression dramatically increased upon Listonella anguillarum infection. In vitro, recombinant PaCXCL8l exhibited a significant chemotactic effect on neutrophils at 0.1 μg/ml and on monocytes/macrophages at 1.0 μg/ml. In vivo, the numbers of peritoneal neutrophils and monocytes/macrophages were both up-regulated following intraperitoneal administration of recombinant PaCXCL8l. These results suggest that PaCXCL8l is crucially involved in the immune response of ayu by mediating chemotaxis of neutrophils and monocytes/macrophages.  相似文献   

12.

Background

New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent on other mechanisms when killing internalized bacteria.

Methodology/Principal Findings

In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S. pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule–phagosome fusion. A mutant S. pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse with azurophilic granules.

Conclusions/Significance

The current data extend our previous findings by showing that a system lacking in oxidase involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S. pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil phagosome maturation, such as azurophilic granule fusion.  相似文献   

13.
Clostridium perfringens is the most common cause of gas gangrene (clostridial myonecrosis), a disease that begins when ischaemic tissues become contaminated with C . perfringens vegetative cells or spores. An aerotolerant anaerobe, C . perfringens quickly multiplies in ischaemic tissues and spreads to healthy areas, leading to a high level of morbidity and mortality. As a species, the bacterium can synthesize 13 different toxins, and these are thought to be the major virulence factors of the disease. However, we present evidence here that C . perfringens can also persist inside macrophages, under aerobic conditions, by escaping the phagosome into the cytoplasm. C . perfringens was not killed by the cells of a clone (J774-33) of the macrophage-like murine cell line J774A.1 under aerobic or anaerobic conditions, whereas the non-pathogenic bacterium Bacillus subtilis was killed by J774-33 cells under both conditions. Electron microscopy images showed that C . perfringens cells were intact and resided mostly in the cytoplasm of J774-33 cells, whereas B . subtilis was in the phagosome. Immunofluorescence microscopy showed that intracellular C . perfringens bacteria failed to co-localize with the late endosome-lysosomal marker glycoprotein LAMP-1, whereas B . subtilis did co-localize with LAMP-1. C . perfringens also appeared to escape the phagosome of both activated and unactivated mouse peritoneal macrophages, but not as efficiently as was seen with the J774-33 cell line. In addition, cytochalasin D was used to show that phagocytosis of C . perfringens was dependent on actin polymerization and that the bacteria attach to J774-33 cells at distinct areas of the cell membrane. We propose that the ability to escape the phagosome and persist inside macrophages is an important factor in the early stages of a gangrene infection, when bacterial numbers are low and phagocytic cells are present.  相似文献   

14.
Proportions of leucocytes from head kidney, blood and spleen were identified as B-cells and neutrophils using a polyclonal antibody to cod IgM and a monoclonal antibody which previously has been shown to bind specifically to salmon and trout neutrophils. The cell specific binding of the antibodies was supported by double immunostaining. The morphology of isolated leucocytes was examined on Diff Quick stained slide preparations, and myeloperoxidase positive neutrophils were identified by diaminobenzidine staining. The antibodies clearly identified distinct cell populations. Using flow cytometry, high proportions of neutrophils were observed in peripheral blood leucocytes and high proportions of B-cells were found in head kidney leucocytes when compared to proportions of these cells in Atlantic salmon (Salmo salar L.). The spleen contained the highest proportion of B-cells. Cytoplasmic staining of immunoglobulin positive cells in slide preparations indicated that plasma cells were present, but not strikingly abundant, in head kidney, spleen and peripheral blood. Staining for myeloperoxidase identified, in accordance with the flow cytometry results, a large number of neutrophils, especially in peripheral blood leucocytes. The neutrophil nucleus was not clearly segmented, but appeared more irregular than rounded. The findings of high proportions of neutrophils in peripheral blood suggest that these cells of the innate immune system might have a central role in defence and protection against infections in cod.  相似文献   

15.
Normal macrophages and Salmonella typhi ribosomal antigen-activated (immune) ones were studied by electron microscopy. Examination of fine sections from samples incubated between 30 and 120 minutes at 37 degrees C, emphasized phagocytic ability of activated macrophages (29-69% activated macrophages phagocytized 3.7-5.6 bacteria/cell, in contrast to 23-43% with 2.6-4.4 bacteria/phagocytized by non-immune cells). The ultrastructural studies of activated macrophages, performed by electron microscopy, showed the following aspects: a) macrophages with pseudopodiform prolongations, presenting the tendency of bacterial sequestration: b) phagosomes with ingested virulent germs; c). bacteria presenting various degrees of wall and cytoplasm alterations; d). mitochondria with multiple cristae; e). cells with well developed Golgi apparatus and the presence of lysosomes in great numbers; f). existence of a space between the phagosome membrane and the bacterial wall. Experimental results demonstrated: I. an increased phagocytic activity of Salmonella typhi ribosomal antigen-activated macrophages and II. activation expressed as ultrastructural modifications at the level of immune macrophages and also of the bacteria phagocytized by them.  相似文献   

16.
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.  相似文献   

17.
Penicillium marneffei is a pathogenic fungus that can cause a life-threatening systemic mycosis in the immunocompromised hosts. We established the model for the phagocytosis of P. marneffei conidia by RAW264.7 murine macrophages and designated the fate of P. marneffei in RAW264.7 cells with respect to persistence, phagosome–lysosome-fusion. And we impaired the immune status of mouse and compared the fate and phagosome–lysosome-fusion of P. marneffei in immunocompetent and immunosuppressed mouse peritoneal macrophages cells. We found that conidia could germinate and survive in macrophages. Within 30 min and up to 2 h of heat-killed conidia internalization, the majority of all phagosome types were labeled for the EEA1 (endosomal markers) and LAMP-1 (lysosomal markers), respectively. But both the percentages of LAMP-1 and EEA1 that associated with live conidia were significantly lower than that with heat-killed conidia. Administration of cyclophosphamide resulted in a significant suppression of macrophages function (phagocytic and fungicidal) against P. marneffei that were not apparently seen. Our data provide the evidence that (i) intracellular conversion of P. marneffei conidia into yeast cells still could be observed in macrophages. (ii) Phagosomes containing live Penicillium marneffei conidia might inhibit the phagosome–lysosome-fusion and result to no acidification surrounding the organisms. (iii) Immunity impaired by cyclophosphamide could not influence the function, including phagocytosis, fungicidal activity and phagosome–lysosome-fusion, of macrophages against P. marneffei.  相似文献   

18.
Dictyostelium cells are professional phagocytes that avidly consume bacteria, their natural prey. Fluorescent probes have allowed us to monitor the initial steps in this process in living cells. Using probes that bind to F-actin, we have visualized the assembly and disassembly of actin filaments responsible for extending the phagocytic cup to engulf a bacterium, and, after the phagosome has sealed, the assembly of new actin filaments to propel the phagosome away from the site of uptake. Using bacteria expressing fluorescent proteins that are susceptible to proteolysis, we have monitored the loss of that fluorescent signal and the staining of the bacterial contents with neutral red, indicating permeabilization of the bacterial cell wall and acidification of the cytoplasm. We find that acidification occurs during a period of microtubule-based transport that promotes fusion of the phagosome with microtubule-associated acidic endosomes. Actin-powered phagosome internalization, transport of the phagosome along microtubules, proteolysis and acidification of bacterial contents, all typically occur within the first six or seven minutes after formation of the phagosome. Thus, tracking individual phagosomes has revealed that early steps in phagosome maturation occur much more rapidly than had been inferred from previous population studies.  相似文献   

19.
The morphology and phagocytic activity of peritoneal exudate cells (PEC) obtained by an intraperitoneal injection of liquid paraffin into tilapia, Oreochromis niloticus , and carp, Cyprinus carpio , were studied with light and electron microscopy. PEC consisted of monocyte-macrophage series cells (M-Mø), neutrophils, eosinophils (granular cells) and others. Cells exhibiting the same morphology as mammalian macrophages but different from monocytes of the same species were identified with light and electron microscopy and designated as peritoneal macrophages. Light and electron microscopy revealed that M-Mø, neutrophils and eosinophils (granular cells) phagocytozed foreign materials added in vivo and in vitro. Eosinophils appeared later in the peritoneal exudate and less actively phagocytic as compared with M-Mø and neutrophils. Small and large phagosomes were formed in M-Mø, neutrophils and eosinophils (granular cells). Large phagosomes were common in neutrophils. Fusion of cytoplasmic granules with the phagosome membrane was observed. The in vitro experiment on phagocytosis revealed that the phagocytic rates in M-Mø and neutrophils were positively correlated with the doses of foreign materials. The results indicated that these two cell types have the highest capacity of phagocytosis.  相似文献   

20.
In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号