首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The trans-splicing of short spliced leader (SL) RNAs onto the 5' ends of mRNAs occurs in a diverse range of taxa. In nematodes, all species so far characterized utilize a characteristic, conserved spliced leader, SL1, as well as variants that are employed in the resolution of operons. Here we report the identification of spliced leader trans-splicing in the basal nematode Trichinella spiralis, and show that this nematode does not possess a canonical SL1, but rather has at least 15 distinct spliced leaders, encoded by at least 19 SL RNA genes. The individual spliced leaders vary in both size and primary sequence, showing a much higher degree of diversity compared to other known trans-spliced leaders. In a survey of T. spiralis mRNAs, individual mRNAs were found to be trans-spliced to a number of different spliced leader sequences. These data provide the first indication that the last common ancestor of the phylum Nematoda utilized spliced leader trans-splicing and that the canonical spliced leader, SL1, found in Caenorhabditis elegans, evolved after the divergence of the major nematode clades. This discovery sheds important light on the nature and evolution of mRNA processing in the Nematoda.  相似文献   

2.
In the nematode Caenorhabditis elegans, up to 15% of the genes are organized in operons. Polycistronic precursor RNAs are processed by trans-splicing at the 5' ends of genes by adding a specific trans-spliced leader. Ten different spliced leaders are known in C. elegans that differ in sequence and abundance. The SL1 leader is most abundant and is spliced to the 5' ends of monocistronic genes and to upstream genes in operons. Trans-splicing is common among nematodes and was observed in the genera Panagrellus, Ascaris, Haemonchus, Anisakis, and Brugia. However, little is known about operons in nonrhabditid nematodes. Dolichorhabditis CEW1, another rhabditid nematode that is now called Oscheius CEW1, contains operons and SL2 trans-splicing. We have studied the presence of operons and trans-splicing in Pristionchus pacificus, a species of the Diplogastridae that has recently been developed as a satellite organism in evolutionary developmental biology. We provide evidence that P. pacificus contains operons and that downstream genes are trans-spliced to SL2. Surprisingly, the one operon analyzed so far in P. pacificus is not conserved in C. elegans, suggesting unexpected genomic plasticity.  相似文献   

3.
4.
5.
6.
In Caenorhabditis elegans, pre-mRNAs of many genes are trans-spliced to one of two spliced leaders, SL1 or SL2. Some of those that receive exclusively SL1 have been characterized as having at their 5' ends outrons, AU-rich sequences similar to introns followed by conventional 3' splice sites. Comparison of outrons from many different SL1-specific C. elegans genes has not revealed the presence of any consensus sequence that might encode SL1-specificity. In order to determine what parameters influence the splicing of SL1, we performed in vivo experiments with synthetic splice sites. Synthetic AU-rich RNA, 51 nt or longer, placed upstream of a consensus 3' splice site resulted in efficient trans-splicing. With all sequences tested, this trans-splicing was specifically to SL1. Thus, no information beyond the presence of AU-rich RNA at least as long as the minimum-length C. elegans intron, followed by a 3' splice site, is required to specify trans-splicing or for strict SL1 specificity.  相似文献   

7.
8.
9.
10.
The nematode Caenorhabditis elegans has an unusual small nuclear RNA, containing a 100-nucleotide RNA molecule, spliced leader RNA, which donates its 5' 22 nucleotides to a variety of recipient RNAs by a trans-splicing reaction. The spliced leader RNA has a 5' trimethylguanosine (TMG) cap, which becomes the 5' end of trans-spliced mRNAs. We found that mature trans-spliced mRNAs were immunoprecipitable with anti-TMG cap antibodies and that TMG-containing dinucleotides specifically competed with the trans-spliced mRNAs for antibody binding. We also found that these mRNAs retained their TMG caps throughout development and that the TMG-capped mRNAs were polysome associated. Since the large majority of C. elegans mRNAs are not trans-spliced, the addition of the spliced leader and its TMG cap to a limited group of recipient RNAs may create a functionally distinct subset of mRNAs.  相似文献   

11.
12.
13.
14.
15.
Y H Lee  X Y Huang  D Hirsh  G E Fox  R M Hecht 《Gene》1992,121(2):227-235
The genes encoding body-wall-specific glyceraldehyde-3-phosphate dehydrogenase from Caenorhabditis briggsae were sequenced and compared to the homologous genes from Caenorhabditis elegans. The direct tandem organization of these genes, gpd-2 and gpd-3, and the size and location of the two introns in each gene are the same in C. elegans and C. briggsae. Primer-extension studies demonstrated that the two genes in C. briggsae are trans-splice differentially with the same splice leader (SL) RNAs as are observed in C. elegans. The gdp-2 gene is trans-spliced with SL1 while gdp-3 is trans-spliced with SL2. Significant sequence conservation was observed within the promoter regions of each species and may indicate those regions responsible for body-wall-muscle-specific gene expression and/or differential trans-splicing. Comparisons of the sequences suggest that the tandem repeat of the genes has been subjected to concerted evolution and that C. briggsae and C. elegans diverged much earlier than would be anticipated based on morphological similarities alone. Finally, an open reading frame found several hundred nucleotides upstream from gpd-2, in both species, appears to be homologous to the ATP synthase subunit, ATPase inhibitor protein, from bovine mitochondria.  相似文献   

16.
Spliced leader (SL) RNA trans-splicing contributes the 5' termini to mRNAs in a variety of eukaryotes. In contrast with some transsplicing metazoan groups (e.g. nematodes), flatworm spliced leaders are variable in both sequence and length in different flatworm taxa. However, an absolutely conserved and unique feature of all flatworm spliced leaders is the presence of a 3'-terminal AUG. We previously suggested that the Schistosoma mansoni spliced leader AUG might contribute a required translation initiator methionine to recipient mRNAs. Here we identified and examined trans-spliced cDNAs from a large set of newly available schistosome cDNAs. 28% of the trans-spliced cDNAs have the SL AUG in-frame with the major open reading frame of the mRNA. We identified over 40 cDNAs (40% of the SL AUG in-frame clones) that require the SL AUG as an initiator methionine to synthesize phylogenetically conserved N-terminal residues characteristic of orthologous proteins. RNA transfection experiments using several schistosome stages demonstrated that the flatworm SL AUG can serve as a translation initiator methionine in vivo. We also present in vivo translation studies of the schistosome initiator methionine context and the effect of the spliced leader AUG added upstream and out-of-frame with the main open reading of recipient mRNAs. Overall, our data have provided evidence that another function of flatworm spliced leader trans-splicing is to provide some recipient mRNAs with an initiator methionine for translation initiation.  相似文献   

17.
18.
19.
Genes in Caenorhabditis elegans operons are transcribed as polycistronic pre-mRNAs in which downstream gene products are trans spliced to a specialized spliced leader, SL2. SL2 is donated by a 110-nucleotide RNA, SL2 RNA, present in the cell as an Sm-bound snRNP. SL2 RNA can be conceptually folded into a phylogenetically conserved three-stem-loop secondary structure. Here we report an in vivo mutational analysis of the SL2 RNA. Some sequences can be changed without consequence, while other changes result in a substantial loss of trans splicing. Interestingly, the spliced leader itself can be dramatically altered, such that the first stem-loop cannot form, with only a relatively small loss in trans-splicing efficiency. However, the primary sequence of stem II is crucial for SL2 trans splicing. Similarly, the conserved primary sequence of the third stem-loop plays a key role in trans splicing. While mutations in stem-loop III allow snRNP formation, a single nucleotide substitution in the loop prevents trans splicing. In contrast, the analogous region of SL1 RNA is not highly conserved, and its mutation does not abrogate function. Thus, stem-loop III appears to confer a specific function to SL2 RNA. Finally, an upstream sequence, previously predicted to be a proximal sequence element, is shown to be required for SL2 RNA expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号