首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA–RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.  相似文献   

2.
Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5-phosphate and 3-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast,Saccharomyces cerevisiae.Abbreviations LRI long range interaction - mt mitochondrial - MRP mitochondrial RNA processing - NME nuclear mitochondrial endonuclease - POP processing of precursor - RNase ribonuclease - SNM suppressor of NME - RNP ribonucleoprotein  相似文献   

3.
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.  相似文献   

4.
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.  相似文献   

5.
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.  相似文献   

6.
RNase MRP cleaves the yeast pre-rRNA at a site in internal transcribed spacer 1 (ITS1) and this cleavage can be reproducedin vitro by the highly purified enzyme. Two protein components (Pop1p and Pop2p) have been identified which are common to yeast RNase MRP and RNase P. Moreover, purified RNase P can also cleave the pre-rRNA substratein vitro, underlining the similarities between these particles. Genetic evidence suggests that RNase MRP functionally interacts with the snoRNPs which are required for other pre-rRNA processing reactions.Abbreviations pre-rRNA ribosomal RNA precursor - snoRNA small nucleolar RNA - snoRNP small nucleolar ribonucleoprotein particle  相似文献   

7.
Pancreatic ribonuclease gene (RNASE1) was previously shown to have undergone duplication and adaptive evolution related to digestive efficiency in several mammalian groups that have evolved foregut fermentation, including ruminants and some primates. RNASE1 gene duplications thought to be linked to diet have also been recorded in some carnivores. Of all mammals, bats have evolved the most diverse dietary specializations, mainly including frugivory and insectivory. Here we cloned, sequenced and analyzed RNASE1 gene sequences from a range of bat species to determine whether their dietary adaptation is mirrored by molecular adaptation. We found that seven insect-eating members of the families Vespertilionidae and Molossidae possessed two or more duplicates, and we also detected three pseudogenes. Reconstructed RNASE1 gene trees based on both Bayesian and maximum likelihood methods supported independent duplication events in these two families. Selection tests revealed that RNASE1 gene duplicates have undergone episodes of positive selection indicative of functional modification, and lineage-specific tests revealed strong adaptive evolution in the Tadarida β clade. However, unlike the RNASE1 duplicates that function in digestion in some mammals, the bat RNASE1 sequences were found to be characterized by relatively high isoelectric points, a feature previously suggested to promote defense against viruses via the breakdown of double-stranded RNA. Taken together, our findings point to an adaptive diversification of RNASE1 in these two bat families, although we find no clear evidence that this was driven by diet. Future experimental assays are needed to resolve the functions of these enzymes in bats.  相似文献   

8.
The crystal structure of Escherichia coli ribonuclease I (EcRNase I) reveals an RNase T2-type fold consisting of a conserved core of six beta-strands and three alpha-helices. The overall architecture of the catalytic residues is very similar to the plant and fungal RNase T2 family members, but the perimeter surrounding the active site is characterized by structural elements specific for E. coli. In the structure of EcRNase I in complex with a substrate-mimicking decadeoxynucleotide d(CGCGATCGCG), we observe a cytosine bound in the B2 base binding site and mixed binding of thymine and guanine in the B1 base binding site. The active site residues His55, His133, and Glu129 interact with the phosphodiester linkage only through a set of water molecules. Residues forming the B2 base recognition site are well conserved among bacterial homologs and may generate limited base specificity. On the other hand, the B1 binding cleft acquires true base aspecificity by combining hydrophobic van der Waals contacts at its sides with a water-mediated hydrogen-bonding network at the bottom. This B1 base recognition site is highly variable among bacterial sequences and the observed interactions are unique to EcRNaseI and a few close relatives.  相似文献   

9.
Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1 cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1 that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1 interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1 cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR.  相似文献   

10.
In murine experimental cutaneous leishmaniasis, parasite infection induces an accumulation of macrophages expressing migration inhibitory factor-related protein 8 (MRP8) and MRP14, two members of the S100 calcium-binding protein family. Although MRP8 and MRP14 are cytoplasmic proteins expressed by myeloid cells, recent studies have demonstrated that MRP8 and MRP14 have extracellular functions such as chemotactic activities. In this study, we examined whether extracellular MRP8 and MRP14 interact with Leishmania parasites during infection. By immunohistochemistry, positive staining by MRP8 and MRP14 was detected on amastigotes in skin lesions of Leishmania major-infected mice. Western blot analysis with amastigotes purified from the skin lesions demonstrated that both of these proteins adhered to amastigotes. The adhesion of MRP14 to amastigotes was reproduced in vitro and enhanced in the presence of Ca2+ and Zn2+. MRP14 adhered to not only amastigotes, but also promastigotes, suggesting receptor molecules for MRP14 are expressed commonly in both developmental stages.  相似文献   

11.
Elucidation of the high-resolution structures of folding intermediates is a necessary but difficult step toward the ultimate understanding of the mechanism of protein folding. Here, using hydrogen-exchange-directed protein engineering, we populated the folding intermediate of the Thermus thermophilus ribonuclease H, which forms before the rate-limiting transition state, by removing the unfolded regions of the intermediate, including an α-helix and two β-strands (51 folded residues). Using multidimensional NMR, we solved the structure of this intermediate mimic to an atomic resolution (backbone rmsd, 0.51 Å). It has a native-like backbone topology and shows some local deviations from the native structure, revealing that the structure of the folded region of an early folding intermediate can be as well defined as the native structure. The topological parameters calculated from the structures of the intermediate mimic and the native state predict that the intermediate should fold on a millisecond time scale or less and form much faster than the native state. Other factors that may lead to the slow folding of the native state and the accumulation of the intermediate before the rate-limiting transition state are also discussed.  相似文献   

12.
13.
MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.  相似文献   

14.
15.
Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast “Saccharomyces cerevisiae” in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.  相似文献   

16.
The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection.  相似文献   

17.
18.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

19.
Replacement of a cis-proline by glycine at position 114 in ribonuclease A leads to a large decrease in thermal stability and simplifies the refolding kinetics. A crystallographic approach was used to determine whether the decrease in thermal stability results from the presence of a cis glycine peptide bond, or from a localized structural rearrangement caused by the isomerization of the mutated cis 114 peptide bond. The structure was solved at 2.0 A resolution and refined to an R-factor of 19.5% and an R(free) of 21.9%. The overall conformation of the protein was similar to that of wild-type ribonuclease A; however, there was a large localized rearrangement of the mutated loop (residues 110-117-a 9.3 A shift of the Calpha atom of residue 114). The peptide bond before Gly114 is in the trans configuration. Interestingly, a large anomalous difference density was found near residue 114, and was attributed to a bound cesium ion present in the crystallization experiment. The trans isomeric configuration of the peptide bond in the folded state of this mutant is consistent with the refolding kinetics previously reported, and the associated protein conformational change provides an explanation for the decreased thermal stability.  相似文献   

20.
The motor properties of the two yeast class V myosins, Myo2p and Myo4p, were examined using in vitro motility assays. Both myosins are active motors with maximum velocities of 4.5 microm/s for Myo2p and 1.1 microm/s for Myo4p. Myo2p motility is Ca(2+) insensitive. Both myosins have properties of a nonprocessive motor, unlike chick myosin-Va (M5a), which behaves as a processive motor when assayed under identical conditions. Additional support for the idea that Myo2p is a nonprocessive motor comes from actin cosedimentation assays, which show that Myo2p has a low affinity for F-actin in the presence of ATP and Ca(2+), unlike chick brain M5a. These studies suggest that if Myo2p functions in organelle transport, at least five molecules of Myo2p must be present per organelle to promote directed movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号