首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.  相似文献   

4.
In Kohara's library derived from Escherichia coli K-12 W3110 (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987), multiple copies of chromosomal sequence are found at 68 and at 64 to 65 min (M. Umeda and E. Ohtsubo, J. Mol. Biol. 213:229-237, 1990). We have determined that the rnpB gene (previously mapped at 70 min [B. J. Bachmann, Microbiol. Rev. 54:130-197, 1990]) is located within these segments of repeated sequences as five separate copies, together with tdcA, B, C, and R (mapped at 68 min [Bachmann, 1990]) and six unidentified open reading frames. Since close linkage of rnpB and tdc is found in various strains of E. coli K-12, the rnpB gene should be mapped at 68 min rather than 70 min.  相似文献   

5.
The main function of Csk tyrosine kinases is phosphorylation of the C-terminal part of Src tyrosine kinases as a mechanism of their downregulation. A decrease in the expression of csk gene results in the enhancement of Src tyrosine kinase activity. In this study, cDNA containing the full coding sequence of the human leukocyte Csk tyrosine kinase gene has been cloned. The protein encoded by a 1624-bp cDNA fragment has 99% homology to human Csk tyrosine kinase. A comparative sequence analysis of full-length cDNAs for Csk tyrosine kinase of normal lymphocytes and lymphocytes of patients with choroidal melanoma revealed a nucleotide substitution in exon 10 of the gene, which appears to be of diagnostic significance. It has been shown that the risk of choroidal melanoma correlated with the frequency of this allele.  相似文献   

6.
Type II tyrosinemia, designated Richner-Hanhart syndrome in humans, is a hereditary metabolic disorder with autosomal recessive inheritance characterized by a deficiency of tyrosine aminotransferase activity. Mutations occur in the human tyrosine aminotransferase gene, resulting in high levels of tyrosine and disease. Type II tyrosinemia occurs in mink, and our hypothesis was that it would also be associated with mutation(s) in the tyrosine aminotransferase gene. Therefore, the transcribed cDNA and the genomic tyrosine aminotransferase gene were sequenced from normal and affected mink. The gene extended over 11.9 kb and had 12 exons coding for a predicted 454-amino-acid protein with 93% homology with human tyrosine aminotransferase. FISH analysis mapped the gene to chromosome 8 using the Mandahl and Fredga (1975) nomenclature and chromosome 5 using the Christensen et al. (1996) nomenclature. The hypothesis was rejected because sequence analysis disclosed no mutations in either cDNA or introns that were associated with affected mink. This suggests that an unlinked gene regulatory mutation may be the cause of tyrosinemia in mink.  相似文献   

7.
Amplification and a cloning of fragments of genes of human retina tyrosine kinases, the nucleotide sequences of which feature a high homology to the gene families of the Yes and Csk tyrosine kinases, and a cloning of the complete coding sequence of the cDNA of the Csk tyrosine kinase gene of the human lymphocytes have been carried out. It has been established that this sequence contains 1,624 bp and encodes a protein that, with a 99% homology, corresponds to the human tyrosine kinase. A comparative analysis of the nucleotide sequences of the full-size cDNA of the Csk tyrosine kinase of the lymphocytes of healthy donors and of patients with an eye choroidal melanoma has shown that a risk of development of an eye choroidal melanoma can be estimated by the frequency of occurrence of a mutant allele in the 10th exon.  相似文献   

8.
Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.  相似文献   

9.
Abstract: The tyrosine hydroxylase gene is expressed specifically in catecholaminergic cells, and its activity is regulated by afferent stimuli. To characterize molecular mechanisms underlying those regulations, we have constructed chimeric genes consisting of bovine tyrosine hydroxylase gene promoters (wild-type or deletion mutants) and a luciferase reporter gene. The basal expression of these genes and their regulation by angiotensin II were examined in cultured bovine adrenal medullary cells. Luciferase activity was normalized to the amount of transfected plasmid DNA. A pTHgoodLUC plasmid containing the -428/+21-bp fragment of the tyrosine hydroxylase gene promoter expressed luciferase activity at severalfold higher levels than the promoterless pOLUC plasmid. Deletion of the -194/-54-bp promoter fragment containing POU/Oct, SP1, and other putative regulatory elements increased luciferase expression fivefold. An additional deletion further upstream (-269/-194 bp), including a 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive element (TRE)-like site, reduced promoter activity. These results indicate the presence of negatively and positively acting regions in the bovine tyrosine hydroxylase gene promoter controlling basal promoter activity in adrenal medullary cells. Angiotensin II stimulated the expression of endogenous tyrosine hydroxylase gene and pTHgood-LUC approximately threefold without affecting the expression of pOLUC. A comparable threefold stimulation was observed following the deletion of the -194/-54-bp promoter region, despite the increase in basal promoter activity. Additional deletion of the -269/-194-bp promoter fragment reduced stimulation by angiotensin II to 1.5-fold. These results indicate that the angiotensin II receptor-responsive element is located in the -269/-194-bp promoter region containing the TRE-like site. Additional angiotensin II-responsive site(s) may be present outside this region. Gel mobility shift assays demonstrated constitutive and angiotensin II-induced protein binding to the tyrosine hydroxylase gene promoter. Some DNA-protein complexes were displaced with c-Fos antibodies. The results suggest that c-Fos-related antigens support basal promoter activity and mediate activation of tyrosine hydroxylase by angiotensin II receptor.  相似文献   

10.
The tyrP gene which codes for a component of the tyrosine-specific transport system of Escherichia coli has been cloned on a 2.8-kilobase insert into plasmid pBR322. Transposon mutagenesis, using Tn1000, indicates that the tyrP+ gene is at least 1.1 kilobase in length. Labeling of the tyrP protein in maxicells with [35S]methionine indicates an apparent molecular weight of ca. 24,500. Sedimentation analysis reveals that the tyrP protein is associated with the cell membrane and is not free in the cytoplasm or periplasm. Strains with many copies of the tyrP+ gene show an enhanced uptake of tyrosine, but the expression of the system is still modulated by tyrosine and phenylalanine in the presence of the tyrR+ regulator protein. Accumulated radioactive tyrosine is rapidly effluxed by the addition either of energy uncouplers or of excess nonradioactive tyrosine, indicating that the transport system is energized by the proton motive force and that the internal pool is readily exchangeable. The effect of increasing expression of the tyrP gene on the steady-state level of tyrosine accumulated by cells indicates that although the transport system may be dependent on the proton motive force to drive uptake, the system never reaches thermodynamic equilibrium with it.  相似文献   

11.
12.
13.
We report our molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type lb 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.  相似文献   

14.
The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L. brevis was expressed in Lactococcus lactis and functionally characterized using right-side-out membranes. The transporter very efficiently catalyzes homologous tyrosine-tyrosine exchange and heterologous exchange between tyrosine and its decarboxylation product tyramine. Tyrosine-tyramine exchange was shown to be electrogenic. In addition to the exchange mode, the transporter catalyzes tyrosine uniport but at a much lower rate. Analysis of the substrate specificity of the transporter by use of a set of 19 different tyrosine substrate analogues showed that the main interactions between the protein and the substrates involve the amino group and the phenyl ring with the para hydroxyl group. The carboxylate group that is removed in the decarboxylation reaction does not seem to contribute to the affinity of the protein for the substrates significantly. The properties of the TyrP protein are those typical for precursor-product exchangers that operate in proton motive decarboxylation pathways. It is proposed that tyrosine decarboxylation in L. brevis results in proton motive force generation by an indirect proton pumping mechanism.  相似文献   

15.
Abstract: In hypothalamic cells cultured in serum-free medium, the quantity of tyrosine hydroxylase mRNA increases after treatment with an activator of the protein kinase A pathway (8-bromoadenosine cyclic AMP, 3-isobutyl-1-methylxanthine, or forskolin) or an activator of protein kinase C (12- O -tetradecanoylphorbol 13-acetate or sn -1,2-diacylglycerol). The tyrosine hydroxylase mRNA level decreases in the cells after inhibition of protein kinase C with calphostin C or after depletion of protein kinase C by extended phorbol ester treatment. These data suggest that both protein kinase pathways regulate tyrosine hydroxylase gene expression in hypothalamic cells. As simultaneous activation of both pathways has less than an additive effect on the tyrosine hydroxylase mRNA level, they appear to be interrelated. Compared with the rapid and dramatic increase of the tyrosine hydroxylase mRNA level in pheochromocytoma cells, activation of the protein kinase A or protein kinase C pathway in the cultured hypothalamic cells induces slow changes of a small magnitude in the amount of tyrosine hydroxylase mRNA. The slow regulation of tyrosine hydroxylase gene expression in hypothalamic dopaminergic neurons corresponds to the relatively high stability of tyrosine hydroxylase mRNA (half-life = 14 ± 1 h) in these cells.  相似文献   

16.
The Bmx gene, a member of the Tec tyrosine kinase gene family, is known to be expressed in subsets of hematopoietic and endothelial cells. In this study, mice were generated in which the first coding exon of the Bmx gene was replaced with the lacZ reporter gene by a knock-in strategy. The homozygous mice lacking Bmx activity were fertile and had a normal life span without an obvious phenotype. Staining of their tissues using beta-galactosidase substrate to assess the sites of Bmx expression revealed strong signals in the endothelial cells of large arteries and in the endocardium starting between days 10.5 and 12.5 of embryogenesis and continuing in adult mice, while the venular endothelium showed a weak signal only in the superior and inferior venae cavae. Of the five known endothelial receptor tyrosine kinases tested, activated Tie-2 induced tyrosyl phosphorylation of the Bmx protein and both Tie-2 and vascular endothelial growth factor receptor 1 (VEGFR-1) stimulated Bmx tyrosine kinase activity. Thus, the Bmx tyrosine kinase has a redundant role in arterial endothelial signal transduction downstream of the Tie-2 and VEGFR-1 growth factor receptors.  相似文献   

17.
18.
The tyrosine aminotransferase (TAT) gene is expressed in a tissue and developmental-specific manner. In addition, this gene is regulated by glucocorticoid and polypeptide hormones and its expression is affected when a regulatory region near the albino locus of the mouse is deleted. In order to allow studies of the molecular effects of these deletion mutations we have isolated and characterized the mouse TAT gene. The gene is 9.2 x 10(3) bases in length and consists of 12 exons which give rise to a 2.3 x 10(3) base long messenger RNA. The DNA sequence at the 5' end of the gene was determined and compared with the corresponding sequence of the rat tyrosine aminotransferase gene. The sequence comparison showed extensive homology over the entire region sequenced. In addition, DNA: DNA heteroduplex studies between the mouse and rat tyrosine aminotransferase genes revealed that this homology extends over the entire gene and its flanking sequences. The mouse tyrosine aminotransferase gene has been mapped distal to the serum esterase-1 locus on mouse chromosome 8, using a restriction fragment length polymorphism between two mouse species. Since the albino deletions are located on mouse chromosome 7, the assignment of the TAT gene to chromosome 8 suggests that a regulatory factor(s) affecting TAT gene expression acts in trans.  相似文献   

19.
Tyrosine is the endogenous substrate for melanin production within melanosomes, but the method of tyrosine transport into the melanosome has not been investigated. In the mouse, melanogenesis is disrupted by mutations in the p gene resulting in the pink-eyed dilution phenotype; it has been suggested that the p gene codes for a tyrosine transport protein. We determined that normal (melan-a) melanosome-rich granular fractions take up 10 μm [3H]tyrosine at 21.1 ± 6.1 (SEM, standard error of the mean) pmol/min/mg protein (N=7) compared with 21.3 ± 5.8 SEM pmol/min/mg protein (N=5) for pink-eyed dilution, whose plasma membrane tyrosine transport was also normal (Km 89 μM; Vmax 302 pmol/min/mg cell protein). We also demonstrated that pink-eyed dilution melanosomes are immature by virtue of their low density, high hexosaminidase activity, and lack of pigment. These data indicate that a tyrosine transport system exists in the melanosomal membrane and that the p gene does not encode a tyrosine transporter of critical importance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号