首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.  相似文献   

4.
RNA polymerase III transcribes human microRNAs   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that down-regulate gene expression in a sequence specific manner to control plant growth and development. The identification and characterization of miRNAs are critical steps in finding their target genes and elucidating their functions. The objective of the present study was to assess the genetic variation of miRNA genes through expression comparisons and miRNA-based AFLP marker analysis. Seven miRNAs were first selected for RT-PCR and four for quantitative RT-PCR analysis that showed considerably high or differential expression levels in early stages of boll development. Except for miR160a, differential gene expression of miR171, 390a, and 396a was detected in early developing bolls at one or more timepoints between two cultivated cotton cultivars, Pima Phy 76 (Gossypium barbadense) and Acala 1517-99 (Gossypium hirsutum). Our further work demonstrated that genetic diversity of miRNA genes can be assessed by miRNA-AFLP analysis using primers designed from 22 conserved miRNA genes in combination with AFLP primers. Homologous miRNA genes can be also identified and isolated for sequencing and confirmation using this homology-based genotyping approach. This strategy offers an alternative to isolating a full length of miRNA genes and their up-stream and down-stream sequences. The significance of the expression and sequence differences of miRNAs between cotton species or genotypes needs further studies.  相似文献   

7.
8.
Facile means for quantifying microRNA expression by real-time PCR   总被引:19,自引:0,他引:19  
Shi R  Chiang VL 《BioTechniques》2005,39(4):519-525
MicroRNAs (miRNAs) are 20-24 nucleotide RNAs that are predicted to play regulatory roles in animals and plants. Here we report a simple and sensitive real-time PCR method for quantifying the expression of plant miRNAs. Total RNA, including miRNAs, was polyadenylated and reverse-transcribed with a poly(T) adapter into cDNAs for real-time PCR using the miRNA-specific forward primer and the sequence complementary to the poly(T) adapter as the reverse primer. Several Arabidopsis miRNA sequences were tested using SYBR Green reagent, demonstrating that this method, using as little as 100 pg total RNA, could readily discriminate the expression of miRNAs having asfew as one nucleotide sequence difference. This method also revealed miRNA tissue-specific expression patterns that cannot be resolved by Northern blot analysis and may therefore be widely useful for characterizing miRNA expression in plants as well as in animals.  相似文献   

9.
10.
Widespread regulatory activity of vertebrate microRNA* species   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
The objectives of this study included: (1) identify the expression of miRNAs specific to bovine cumulus-oocyte complexes (COCs) during late oogenesis, (2) characterize the expression of candidate miRNAs as well as some miRNA processing genes, and (3) computationally identify and characterize the expression of target mRNAs for candidate miRNAs. Small RNAs in the 16-27 bp range were isolated from pooled COCs aspirated from 1- to 10-mm follicles of beef cattle ovaries and used to construct a cDNA library. A total 1798 putative miRNA sequences from the cDNA library of small RNA were compared to known miRNAs. Sixty-four miRNA clusters matched previously reported sequences in the miRBase database and 5 miRNA clusters had not been reported. TaqMan miRNA assays were used to confirm the expression of let-7b, let-7i, and miR-106a from independent collections of COCs. Real-time PCR assays were used to characterize expression of miRNA processing genes and target mRNAs (MYC and WEE1A) for the candidate miRNAs from independent collections of COCs. Expression data were analyzed using general linear model procedures for analysis of variance. The expression of let-7b and let-7i were not different between the cellular populations from various sized follicles. However, miR-106a expression was greater (P<0.01) in oocytes compared with COCs and granulosa cells. Furthermore, all the miRNA processing genes have greater expression (P<0.001) in oocytes compared with COCs and granulosa cells. The expression of potential target mRNAs for let-7 and let-7i (i.e., MYC), and miR-106a (i.e., WEE1A) were decreased (P<0.05) in oocytes compared with COCs and granulosa cells. These results demonstrate specific miRNAs within bovine COCs during late oogenesis and provide some evidence that miRNAs may play a role regulating maternal mRNAs in bovine oocytes.  相似文献   

13.
14.
A novel method to detect functional microRNA targets   总被引:6,自引:0,他引:6  
  相似文献   

15.
16.
Small regulatory RNA repertoires in biological samples are heterogeneous mixtures that may include species arising from varied biosynthetic pathways and modification events. Small RNA profiling and discovery approaches ought to capture molecules in a way that is representative of expression level. It follows that the effects of RNA modifications on representation should be minimized. The collection of high-quality, representative data, therefore, will be highly dependent on bias-free sample manipulation in advance of quantification. We examined the impact of 2'-O-methylation of the 3'-terminal nucleotide of small RNA on key enzymatic reactions of standard front-end manipulation schemes. Here we report that this common modification negatively influences the representation of these small RNA species. Deficits occurred at multiple steps as determined by gel analysis of synthetic input RNA and by quantification and sequencing of derived cDNA pools. We describe methods to minimize the effects of 2'-O-methyl modification of small RNA 3'-termini using T4 RNA ligase 2 truncated, and other optimized reaction conditions, demonstrating their use by quantifying representation of miRNAs and piRNAs in cDNA pools prepared from biological samples.  相似文献   

17.
Chinese hamster ovary (CHO) cells are the predominant cell factory for the production of recombinant therapeutic proteins. Nevertheless, the lack in publicly available sequence information is severely limiting advances in CHO cell biology, including the exploration of microRNAs (miRNA) as tools for CHO cell characterization and engineering. In an effort to identify and annotate both conserved and novel CHO miRNAs in the absence of a Chinese hamster genome, we deep-sequenced small RNA fractions of 6 biotechnologically relevant cell lines and mapped the resulting reads to an artificial reference sequence consisting of all known miRNA hairpins. Read alignment patterns and read count ratios of 5' and 3' mature miRNAs were obtained and used for an independent classification into miR/miR* and 5p/3p miRNA pairs and discrimination of miRNAs from other non-coding RNAs, resulting in the annotation of 387 mature CHO miRNAs. The quantitative content of next-generation sequencing data was analyzed and confirmed using qPCR, to find that miRNAs are markers of cell status. Finally, cDNA sequencing of 26 validated targets of miR-17-92 suggests conserved functions for miRNAs in CHO cells, which together with the now publicly available sequence information sets the stage for developing novel RNAi tools for CHO cell engineering.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号